
CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 1 of 91

QuickOPC-Classic 5.12 Concepts

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 2 of 91

Contents

Introduction ..7

Installation ..8

Operating Systems.. 9

Prerequisites ... 10

Licensing ... 11

Related Products .. 11

Product Parts ... 12

Assemblies .. 12

XML Comments .. 13

COM Components .. 13

Management Tools ... 13

Development Libraries ... 14

Demo Application ... 14

Simulation OPC Server .. 15

License Manager ... 16

Documentation and Help ... 16

Fundamentals .. 18

Typical Usage .. 18

Thick-client .NET applications on LAN ... 18

Thick-client COM applications on LAN ... 19

Web applications (server side) .. 20

Referencing the Assemblies ... 21

Application Configuration File Changes (Rarely Needed) .. 22

Namespaces ... 23

Referencing the Components ... 24

Naming Conventions .. 25

Components and Objects ... 26

Computational Objects .. 26

User Interface Objects ... 28

Stateless Approach ... 30

Simultaneous Operations ... 30

Error Handling .. 31

Errors and Multiple-Element Operations .. 32

Helper Types ... 33

Dictionary Object ... 33

Time Periods .. 33

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 3 of 91

OPC Quality .. 34

Value, Timestamp and Quality (VTQ) .. 35

Result Objects .. 35

Variant Type (VarType) .. 35

Element Objects ... 36

Descriptor Objects ... 37

Parameter Objects ... 37

OPC Data Access Tasks ... 38

Obtaining Information .. 38

Reading from OPC Items .. 38

Getting OPC Property Values ... 39

Modifying Information ... 40

Writing to OPC Items ... 40

Browsing for Information ... 40

Browsing for OPC Servers .. 41

Browsing for OPC Nodes (Branches and Leaves) ... 41

Browsing for OPC Access Paths .. 42

Browsing for OPC Properties ... 42

Subscribing for Information.. 43

Subscribing to OPC Items ... 43

Changing Existing Subscription .. 44

Unsubscribing from OPC Items .. 45

Item Changed Event ... 45

Using Callback Methods Instead of Event Handlers .. 46

Setting Parameters ... 47

OPC Common Dialogs ... 49

Computer Browser Dialog .. 49

OPC Server Dialog .. 50

OPC-DA Item Dialog ... 50

OPC-DA Property Dialog .. 51

OPC User Objects .. 52

Computer Browser Dialog .. 52

OPC Server Browse Dialog ... 53

OPC-DA Item Browse Dialog .. 54

OPC-DA Item Select Dialog .. 55

OPC Alarms and Events Tasks ... 57

Obtaining Information .. 57

Getting Condition State ... 57

Modifying Information ... 57

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 4 of 91

Acknowledging a Condition ... 58

Browsing for Information ... 58

Browsing for OPC Servers .. 58

Browsing for OPC Nodes (Areas and Sources) ... 58

Querying for OPC Event Categories ... 59

Subscribing for Information.. 60

Subscribing to OPC Events ... 60

Changing Existing Subscription .. 61

Unsubscribing from OPC Events .. 61

Refreshing Condition States ... 61

Notification Event .. 62

Using Callback Methods Instead of Event Handlers .. 63

Setting Parameters ... 64

EasyOPC.NET Extensions .. 66

Usage .. 66

Data Access Extensions .. 66

OPC Properties ... 66

Type-safe Access ... 66

Well-known Properties ... 67

Alternate Access Methods .. 67

OPC Items ... 67

Type-safe Access ... 67

Software Toolbox Extender Replacement .. 68

Application Deployment .. 69

Deployment Elements .. 69

Assemblies ... 69

Development Libraries and COM Components ... 69

Management Tools .. 70

Prerequisites .. 70

Licensing ... 72

Deployment Methods .. 72

Manual Deployment .. 72

Automated Deployment .. 73

Advanced Topics .. 74

OPC Specifications .. 74

OPC-UA (Universal Architecture) ... 74

OPC Interoperability ... 76

Event Logging ... 77

EasyOPC Options Utility .. 77

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 5 of 91

COM Registration and Server Types ... 77

Asynchronous Operations .. 78

Multiple Notifications in One Call .. 80

Internal Optimizations .. 81

Failure Recovery ... 82

Timeout Handling ... 83

Data Types .. 85

Multithreading and Synchronization .. 87

64-bit Platforms .. 89

32-bit and 64-bit Code .. 89

OPC on 64-bit Systems .. 89

Version Isolation ... 90

Additional Resources ... 91

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 7 of 91

Introduction

Are you having difficulties incorporating the OPC data into your solution? Need to do

it quickly and in quality? If so, QuickOPC comes to the rescue.

QuickOPC is a radically new approach to access OPC data. Traditionally, OPC

programming required complicated code, no matter whether you use OPC custom or

automation interfaces. OPC Server objects must be instantiated, OPC Group objects

must be created and manipulated, OPC Items must be added and managed properly,

and subscriptions must be established and maintained. Too many lines of error-prone

code must be written to achieve a simple goal – reading or writing a value, or

subscribing to value changes.

QuickOPC is a set of components that simplify the task of integrating OPC into

applications. Reading a value from OPC Data Access server, or writing a data value

can be achieved in just one or two lines of code! Receiving alarms from OPC Alarms

and Events server is also easy.

The components can be used from various languages and environments.

QuickOPC-Classic is a product line that consists of two products: QuickOPC.NET and

QuickOPC-COM. The text is document applies mostly to both products. When

necessary, the differing text is marked with corresponding COM or .NET icon.

In QuickOPC.NET, the available examples show how the components can be used

from C#, Visual Basic.NET, and managed C++. Windows Forms, ASP.NET pages,

console applications, and WPF applications are all supported.

The development tools we have targeted primarily are Microsoft Visual Studio 2008

and Microsoft Visual Studio 2010.

In QuickOPC-COM, the available examples show how the components can be used

from Visual Basic (VB), C++, VBScript (e.g. in ASP, or Windows Script Host), JScript,

PHP, Visual Basic for Applications (VBA, e.g. in Excel), Visual FoxPro (VFP), and other

tools. Any tool or language that supports COM Automation is supported.

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 8 of 91

Installation

The installation can be started by running the setup program. Just follow the on-

screen instructions. The installation program requires that you have administrative

privileges to the system.

After an introductory screen, the setup wizard offers you the basic installation

options:

For start, simply choose one of the “express” install options. If you decide to select

“custom install”, the installation program then offers you several installation types,

and also allows you to choose specifically which part of the product to install. In

addition, with the “custom install”, you can also influence additional settings such as

the destination location, and whether to automatically Launch the License Manager

utility.

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 9 of 91

When the installation is finished, it opens the Quick Start document. You can access

the documentation and various tools from your Start menu.

The product includes an uninstall utility and registers itself as an installed application.

It can therefore be removed easily from Control Panel. Alternatively, you can also use

the Uninstall icon located in the product’s group in the Start menu.

Operating Systems

The product is supported on following operating systems:

 Microsoft Windows XP with Service Pack 2 or later (x86)

 Microsoft Windows Vista with Service Pack 1 or later (x86 or x64)

 Microsoft Windows 7 (x86 or x64)

 Microsoft Windows Server 2003 with Service Pack 1 or later (x86 or x64)

 Microsoft Windows Server 2008 (x86 or x64)

 Microsoft Windows Server 2008 R2 (x64), optionally with Service Pack 1

On x64 platforms, QuickOPC.NET can run in 32-bit or 64-bit mode.

QuickOPC.COM currently runs always in 32-bit mode, even on x64 platforms.

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 10 of 91

Prerequisites

For QuickOPC.NET, the following software must be present on the target system

before the installation:

1. Microsoft .NET Framework 3.5 with Service Pack 1 (Full or Client Profile), or

Microsoft .NET Framework 4 (Full or Client Profile).

Needed when: Always (the choice depends on the framework that you

target).

The Client Profile of the .NET Framework is enough for QuickOPC.NET itself;

however in some scenarios you will need the Full profile, such as when you

are developing ASP.NET applications, or want to run the ASP.NET examples

included with the product.

2. Adobe (Acrobat) Reader, or compatible PDF viewer.

The QuickOPC.NET setup program also installs following software on the target

system, when needed for the selected set of installation components:

1. Microsoft Visual C++ 2008 Service Pack 1 Redistributable Package ATL

Security Update (x86).

2. Microsoft Visual C++ 2008 Service Pack 1 Redistributable Package ATL

Security Update (x64).

3. Microsoft Visual C++ 2010 Redistributable Package (x86).

4. Microsoft Visual C++ 2010 Redistributable Package (x64).

5. OPC Core Components 3.00 Redistributable (x86).

6. OPC Core Components 3.00 Redistributable (x64).

For QuickOPC-COM, the following software must be present on the target system

before the installation:

1. Microsoft .NET Framework 3.5 with Service Pack 1.

QuickOPC-COM does not directly require the Microsoft .NET Framework 3.5,

but OPC Core Components setup may fail without it.

Microsoft .NET Framework 3.5 is also needed for OPC UA COM Interop

Components. QuickOPC-COM does not use it directly. This is only needed if

you want to connect to OPC-UA (Universal Architecture) servers, and you

check “OPC UA COM Interop Components” in the selection of components to

be installed.

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 11 of 91

2. Adobe (Acrobat) Reader, or compatible PDF viewer.

The QuickOPC-COM setup program also installs following software on the target

system:

1. Microsoft Visual C++ 2010 Redistributable Package (x86)

2. OPC Core Components 3.00 Redistributable (x86)

Licensing

QuickOPC is a licensed product. You must obtain a license to use it in development or

production environment. For evaluation purposes, you are granted a trial license,

which is in effect if no other license is available. The QuickOPC.NET and QuickOPC-

COM parts are licensed separately.

With the trial license, the components only provide valid OPC data for 30 minutes

since the application was started. After this period elapses, performing OPC

operations will return an error. Restarting the application gives you additional 30

minutes, and so on. If you need to evaluate the product but the default trial license is

not sufficient for you purposes, please contact the vendor or producer, describe your

needs, and a special trial license may be provided to you.

The licenses are installed and managed using a License Manager utility, described

further in this document.

Related Products

Additional products exist to complement the base QuickOPC.NET offering. Check the

options available with your vendor.

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 12 of 91

Product Parts

Assemblies

At the core of QuickOPC.NET there are .NET assemblies that contain reusable library

code. You reference these assemblies from the code of your application, and by

instantiating objects from those assemblies and calling methods on them, you gain

the OPC functionality.

The assembly files are installed into a subdirectory called Assemblies under the

installation directory of the product. For easy recognition among other assemblies

when used in a larger context, all assemblies start with “OpcLabs.” prefix.

Following assemblies are part of QuickOPC.NET:

Assembly Name File Title Description

OpcLabs.BaseLib OpcLabs.BaseLib.dll OPC Labs Base
Library

Supporting code

OpcLabs.EasyOpcClassic-
Internal

OpcLabs.EasyOpcClassic-
Internal.dll

EasyOPC.NET
Internal Library

Supporting code

OpcLabs.EasyOpcClassic OpcLabs.EasyOpcClassic.
dll

EasyOPC.NET
Library

Contains classes that
facilitate easy work with
various OPC specifications,
such as OPC Data Access and
OPC Alarms and Events.

OpcLabs.EasyOpcClassic-
Forms

OpcLabs.EasyOpcClassic-
Forms.dll

EasyOPC.NET
Forms

Contains classes that
facilitate easy work with OPC
Data Access and OPC Alarms
and Events from Windows
Forms applications.

OpcLabs.EasyOpcClassic-
Extensions

OpcLabs.EasyOpcClassic-
Extensions.dll

EasyOPC.NET
Extensions

Extends functionality of
OpcLabs.EasyOpcClassic

QuickOPC.NET components were consciously written to target Microsoft .NET

Framework 3.5, i.e. they do not depend on features available only in the later version

of the framework. As such, you can use the components in applications targeting

version 3.5 or 4.0 of the Microsoft .NET Framework.

For the curious, QuickOPC.NET has been developed in Microsoft Visual Studio 2010

(with the use of Visual Studio 2008 platform toolset for .NET Framework 3.5 target).

The layers that directly use COM (such as the OpcLabs.EasyOpcClassic assembly) are

written in managed C++. More precisely, they contain mixed mode assemblies, where

the bulk of the code is in MSIL instructions, with a few exceptions where necessary.

All other parts are written in pure C#.

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 13 of 91

XML Comments

Together with the .DLL files of the assemblies, there are also .XML files that contain

XML comments for them. The texts contained in these files are used by various tools

to provide features such as IntelliSense and Object Browser information in Visual

Studio.

COM Components

At the core of QuickOPC-COM there are COM components that contain reusable

library code. You reference these components from the code of your application, and

by instantiating objects from those components and calling methods on them, you

gain the OPC functionality.

The component files are installed into a subdirectory called Bin under the installation

directory of the product. Following components are part of QuickOPC-COM:

Component
Name

File(s) Title Description

EasyOPC easyopci.dll
easyopcl.exe

EasyOPC
Component

Contains classes that facilitate
easy work with OPC Data Access
and OPC Alarms and Events.

OPCUserObjects OPCUserObjects.exe OPC User
Objects

Contains classes that make it
easy to include OPC-related user
interface in your application.

QuickOPC-COM components were consciously written so that a broad range of COM

automation clients can use them, without limitation to programming language or

tools used.

For the curious, QuickOPC-COM has been developed in Microsoft Visual Studio 2010,

and is written in C++.

Management Tools

Management tools allow you to configure and monitor the QuickOPC-COM

components. The setup program installs following management tools:

EasyOPC Options Application: Use this utility to configure the desired behavior of

EasyOPC component. EasyOPC component comes with predefined settings that are

suitable for most applications. For large-volume operations, or specialized needs, it

may be necessary to fine-tune the settings.

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 14 of 91

Event Log Options Application: Use this utility to configure how errors and events

will be generated and logged.

Development Libraries

In Microsoft COM, the components are described by their corresponding Type

Libraries. Type libraries are binary files (.tlb, .dll or .exe files) that include information

about types and objects exposed by an ActiveX (COM) application. A type library can

contain any of the following:

 Information about data types, such as aliases, enumerations, structures, or

unions.

 Descriptions of one or more objects, such as a module, interface, IDispatch

interface (dispinterface), or component object class (coclass). Each of these

descriptions is commonly referred to as a typeinfo.

 References to type descriptions from other type libraries.

By including the type library with QuickOPC-COM, the information about the objects

in the library is made available to the users of the applications and programming

tools.

QuickOPC-COM comes with following type libraries:

 OPC Labs EasyOPC Type Library (Version 5.1, in file easyopct.dll): For

EasyOPC Component.

 OPC Labs OPC User Objects Type Library (Version 5.1, in file

OPCUserObjects.exe): For OPC User Objects.

Demo Application

QuickOPC.NET installs with a demo application that allows exploring various functions

of the product. The demo application is available from the Start menu.

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 15 of 91

QuickOPC-COM installs with a demo application that allows exploring basic functions

of the product. The demo application is available from the Start menu.

Simulation OPC Server

To demonstrate capabilities of QuickOPC, some OPC server is needed. The demo

application installed with the product, and most examples use an OPC Simulation

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 16 of 91

Server that is installed together with QuickOPC. The server’s ProgID is

“OPCLabs.KitServer.2”.

The demo application and the examples are designed to connect to the Simulation

OPC Server in its default configuration (i.e. as shipped). In fact, some very simple

examples connect to just one OPC item, named "Demo.Ramp". There are various

other OPC items in this server that you can use in your own experiments too.

Note: On 64-bit platforms, the installation program still registers the 32-bit (x86)

binary of Simulation OPC Server. This configuration gives better OPC compatibility.

The 64-bit binary of Simulation OPC Server is also installed to the disk, and can be

registered manually if needed.

License Manager

The License Manager is a utility that allows you to install, view and uninstall licenses.

In order to install a license, invoke the License Manager application (from the Start

menu), and press the Install license button. Then, point the standard Open File dialog

to the license file (with .BIN) extension provided to you by your vendor.

Note: You need administrative privileges to successfully install and uninstall licenses.

Documentation and Help

The documentation consists of following parts:

- Concepts (this document).

- Quick Start. Short step-by-step instructions to create your first project.

- Reference. The reference documentation is in .CHM format (Microsoft

HTML Help), and formatted according to Visual Studio style and

standards.

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 17 of 91

- What’s New. Contains information about changes made in this and

earlier versions.

- Bonus Material document.

- Examples document.

- EasyOPC Options Help. Describes the EasyOPC Options Application.

You can access all the above mentioned documentation from the Start menu.

In addition, there is IntelliSense and Object Browser information available from Visual

Studio environment.

The QuickOPC.NET help content integrates with Microsoft Visual Studio 2008 Help

(Microsoft Help 2 format) and Microsoft Visual Studio 2010 Help (Microsoft Help

Viewer 1.0 format).

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 18 of 91

Fundamentals

This chapter describes the fundamental concepts used within QuickOPC component.

Please read it through, as the knowledge of Fundamentals is assumed in later parts of

this document.

Typical Usage

QuickOPC.NET is suitable for use from within any tool or language based on Microsoft

.NET framework. There are many different scenarios for it, but some are more

common.

QuickOPC-COM is suitable for use from within any tool or language based on

Microsoft (COM) Automation. There are many different scenarios for it, but some are

more common.

Thick-client .NET applications on LAN

The most typical use of QuickOPC.NET involves a thick-client user application written

in one of the Microsoft .NET languages. This application uses the types from

QuickOPC.NET object model, and accesses data within OPC servers that are located

on remote computers on the same LAN (Local Area Network). The communication

with the target OPC server is performed by Microsoft COM/DCOM technology.

The following picture shows how the individual pieces work together:

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 19 of 91

Thick-client COM applications on LAN

The most typical use of QuickOPC-COM involves a thick-client user application written

in a tool or language that supports COM automation. This application uses the types

from QuickOPC-COM object model, and accesses data within OPC servers that are

located on remote computers on the same LAN (Local Area Network). The

communication with the target OPC server is performed by Microsoft COM/DCOM

technology.

The following picture shows how the individual pieces work together:

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 20 of 91

Web applications (server side)

The other typical use of QuickOPC is to place it on the Web server inside a Web

application. The Web application provides HTML pages to the client’s browser, runs in

a Web server, such as Microsoft IIS (Internet Information Server), and is written using

tools and languages such as

 ASP/VBScript, PHP, Python and others – any language that supports COM

automation, or

 ASP.NET, C#, Visual Basic.NET, or any other .NET language.

The Web application uses the types from QuickOPC object model, and accesses data

within OPC servers that are located on remote computers on the same LAN (Local

Area Network). The communication with the target OPC server is performed by

Microsoft COM/DCOM technology. No OPC-related (or indeed, COM or Microsoft-

related) software needs be installed on the client machine; a plain Web browser such

as Internet Explorer (IE) or FireFox is sufficient.

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 21 of 91

The following picture shows how the individual pieces work together:

Referencing the Assemblies

Your application first needs to reference the QuickOPC.NET assemblies in order to

use the functionality contained in them. How this is done depends on the language

and tool you are using:

 For Visual Basic in Visual Studio, select the project in Solution Explorer,

and choose Project -> Add Reference command.

 For Visual C# in Visual Studio, select the project in Solution Explorer, and

choose Project -> Add Reference command.

 For Visual C++ in Visual Studio, select the project in Solution Explorer, and

choose Project -> References command.

You are then typically presented with an “Add Reference” dialog. The QuickOPC.NET

assemblies should be listed under its .NET tab. Select those that you need (see their

descriptions in “Product Parts” chapter), and press OK.

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 22 of 91

Most projects will need “EasyOPC.NET Library”; some will also need “EasyOPC.NET

Forms” or “EasyOPC.NET Extensions” component.

If you are using the Visual Studio Toolbox (described further below) to add instances

of components to your project, the assembly references are created for you by Visual

Studio when you drag the component onto the designer’s surface.

Application Configuration File Changes (Rarely Needed)

If you are targeting .NET Framework 4, in certain rare situations, you need to

configure your application to properly load the core mixed-mode assembly of

QuickOPC. In order to do so, add useLegacyV2RuntimeActivationPolicy="true" to

‘startup’ element in your application configuration file.

This setting influences how the CLR activated the mixed mode assemblies targeting

.NET Framework 3.5 (CLR 2.0) that are part of EasyOPC.NET. The components include

a loader code that attempt to configure this setting for you, so that .NET Framework

4 applications can use the EasyOPC.NET assemblies seamlessly. If, however, your

application happens activate other CLR 2.0 assemblies using a .NET Framework 4

application policy before the EasyOPC.NET loader gets a chance to configure the

setting, you will get a following exception (as an inner exception of type loading

attempt failure): “Mixed mode assembly is built against version 'v2.0.50727' of the

runtime and cannot be loaded in the 4.0 runtime without additional configuration

information.”

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 23 of 91

In such case, an additional setting is needed in the application configuration file. In

Visual Studio, you typically design the contents of the application configuration file is

in the app.config file in your project. If you do not have this file in your project, add it

first. After making this change, the file may look like this:

<?xml version="1.0"?>
<configuration>
<startup useLegacyV2RuntimeActivationPolicy="true">
 <supportedRuntime version="v4.0"/>
</startup>
</configuration>

Namespaces

The QuickOPC.NET class library is made up of namespaces. Each namespace contains

types that you can use in your program: classes, structures, enumerations, delegates,

and interfaces.

All our namespaces begin with OpcLabs name. QuickOPC.NET defines types in

following namespaces:

Namespace Name In Assemblies Description

OpcLabs.EasyOpc OpcLabs.EasyOpcClassic
OpcLabs.EasyOpcClassic-
Extensions

Contains classes that facilitate
easy work with various OPC
specifications (i.e. common
functionality that is not tied to a
single specification such as OPC
Data Access or OPC Alarms and
Events).

OpcLabs.EasyOpc.AlarmsAndEvents OpcLabs.EasyOpcClassic
OpcLabs.EasyOpcClassic-
Extensions

Contains classes that facilitate
easy work with OPC Alarms and
Events.

OpcLabs.EasyOpc.DataAccess OpcLabs.EasyOpcClassic
OpcLabs.EasyOpcClassic-
Extensions

Contains classes that facilitate
easy work with OPC Data
Access.

OpcLabs.EasyOpc.DataAccess.Forms OpcLabs.EasyOpcForms Contains classes that facilitate
easy work with OPC Data Access
from Windows Forms
applications.

You can use symbols contained in the namespaces by using their fully qualified name,

such as OpcLabs.EasyOpc.DataAccess.EasyDAClient. In order to save typing and

achieve more readable code, you will typically instruct your compiler to make the

namespaces you use often available without explicit reference. To do so:

 In Visual Basic, place the corresponding Imports statements at the

beginning of your code files.

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 24 of 91

 In Visual C#, place the corresponding using directives at the beginning of

your code files.

 In Visual C++, place the corresponding using namespace directives at the

beginning of your code files.

Referencing the Components

Your application first needs to reference the QuickOPC-COM components in order to

use the functionality contained in them. How this is done depends on the language

and tool you are using.

In Visual Basic 6.0 and Visual Basic for Applications (e.g. Microsoft Excel, Word,

Access, PowerPoint, and many non-Microsoft tools), select Project -> References (or

Tools -> References) from the menu. You are then presented with a “References”

dialog. The QuickOPC-COM type libraries should be listed in alphabetical order,

prefixed with “OPC Labs” in their name so that you can easily find them grouped

together:

Check the boxes next to the libraries you are referencing, and press OK.

Some tools provide a different user interface for referencing the components, while

yet others do not have any user interface at all, and you need to write a source code

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 25 of 91

statement that references the type library directly. Following table contains all pieces

of information that you may need to properly reference and use the components:

Type Library Name Version LIBID File Name Namespace Description

OPC Labs EasyOPC
Type Library

5.1 FAB7A1E3-3B79-
4292-9C3A-
DF39A6F65EC1

easyopct.dll EasyOpcLib Contains classes
that facilitate
easy work with
OPC Data
Access and OPC
Alarms and
Events.

OPC Labs OPC User
Objects Type Library

5.1 965A3842-AEEA-
4DF9-9241-
28B963F76E24

OPCUser-
Objects.exe

OPCUserObjects Contains classes
that provide
user interface
for OPC Data
Access tasks.

For your convenience, we have listed below examples of source code reference

statements in various languages and tools.

Language/
tool

Statement

C++ #import "libid:FAB7A1E3-3B79-4292-9C3A-DF39A6F65EC1"

version(5.1) // EasyOpcLib

WSH <reference guid="{FAB7A1E3-3B79-4292-9C3A-DF39A6F65EC1}"

version="5.1" /> <!--OPC Labs EasyOPC Type Library-->

ASP <!—METADATA TYPE="TypeLib" NAME=" OPC Labs EasyOPC Type
Library" UUID="{ FAB7A1E3-3B79-4292-9C3A-DF39A6F65EC1}"

VERSION="5.1"-->

Note that referencing the type library in WSH or ASP is only needed if you want to

use certain features, such as the named constants included in the library. It is not

necessary to reference the type library for simply instantiating the components and

making methods calls, as for method calls, VBScript or JScript code in WSH or ASP can

interrogate the created objects and use late binding to perform the calls.

It is also possible to do away with referencing the component in Visual Basic 6.0 and

Visual Basic for Applications, and proceed simply to instantiating the object(s) as

described further below, in a way similar to VBScript, but you would lose several

features such as the early-binding, IntelliSense, and ability to use symbolic objects

names and enumeration constants from the type library.

Naming Conventions

In addition to being compliant with common Microsoft recommendations for names,

and in QuickOPC.NET with Microsoft .NET Framework guidelines for names,

QuickOPC follows certain additional naming conventions:

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 26 of 91

 Types which are specific to very simplified (“easy”) model for working with

OPC start with the prefix Easy.

 Types which are specific to OPC Data Access start with DA (or EasyDA) prefix,

types which are specific to OPC Alarms and Events start with AE (or EasyAE)

prefix. Types that are shared among multiple OPC specifications do not have

these prefixes.

Note that the second convention works in addition and together with the fact that

there are separate DataAccess and AlarmsAndEvents namespaces for this purpose

too.

The above described conventions also give you a bit of hint where to look for a

specific type, if you know its name. For example, if the name starts with DA or

EasyDA, the type is most likely in the OpcLabs.EasyOpc.DataAccess namespace.

Without any special prefix, the type is likely to be in the OpcLabs.EasyOpc

namespace.

Components and Objects

QuickOPC is a library of many objects. They belong into two basic categories:

Computational objects provide ”plumbing” between OPC servers and your

application. They are invisible to the end user. User interface objects provide OPC-

related interaction between the user and your application.

Computational Objects

For easy comprehension, there is just one computational object that you need to

start with, for each OPC specification: For OPC Data Access, it is the EasyDAClient

object. For OPC Alarms and Events, it is the EasyAEClient object. All other

computational objects are helper objects (see further in this chapter). You achieve all

OPC computational tasks by calling methods on one of these objects. The remainder

of this paragraph describes the use of EasyDAClient object; the steps for

EasyAEClient object are similar.

In order to be able to use the EasyDAClient object, you need to instantiate it first.

In QuickOPC.NET, there are two methods that you can use:

 Write the code that creates a new instance of the object, using am operator

such as New (Visual Basic), new (Visual C#) or gcnew (Visual C++).

 Drag the component from the Toolbox to the designer surface. This works

because EasyDAClient object is derived from

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 27 of 91

System.ComponentModel.Component (but is not limited to be used as a

“full” component only). You can use this approach in Windows Forms

applications, and in Console and some other types of applications if you first

add a designable component to your application. The designer creates code

that instantiates the component, assigns a reference to it to a field in the

parent component, and sets its properties as necessary. You can then use

designer’s features such as the Properties grid to manipulate the component.

To add the EasyDAClient component to the Toolbox (you only need to this once):

Right-click on the Toolbox, and select “Choose Items…”.

In the “Choose Toolbox Items” dialog, select “.NET Framework Components” tab, and

sort the component by their namespace by clicking on the “Namespace” column

header.

Then, look for “EasyDAClient” in the Name column (this is if you plan to use OPC Data

Access). Check the box next to it, and press OK. The EasyDAClient item should appear

in the Toolbox (note: it will only be visible in the proper context, i.e. when you have

selected an appropriate parent component in the designer, or when you check “Show

All” in the Toolbox context menu).

For OPC Alarms and Events, check “EasyAEClient” component.

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 28 of 91

For Windows Forms user interface components, check the components that you want

under the “OpcLabs.EasyOpc.DataAccess.Forms” namespace.

In QuickOPC-COM, the precise way to instantiate the object depends on the

programming language you are using. For example:

 In Visual Basic 6.0 and Visual Basic for Applications, if you have referenced

the component(s), use the New keyword with the appropriate class name.

 In VBScript (or in VB if you have not referenced the component), use the

CreateObject function with the ProgID of the class.

 In JScript, use the ‘new ActiveXObject(…)’ construct, with the ProgID of the

class.

 In C++, create the smart interface pointer passing ‘__uuidof(…)’ to the

constructor, using the CLSID of the class.

 In Delphi (Object Pascal), call .Create on the class type create by importing

the type library.

 In PHP, use the ‘new COM(…)’ construct, with the ProgID of the class.

 In Python, use ‘win32com.client.Dispatch(…)’ construct, with the ProgID of

the class.

 In Visual FoxPro, use the CREATEOBJECT function with the ProgID of the class.

Following table contains information that is needed by different languages to

instantiate the object(s):

Class Name CLSID ProgID Version Independent
ProgID

EasyDAClient F1B8E6D7-955F-4C12-
A015-9EF6282F73CC

OPCLabs.EasyDAClient.5.1 OPCLabs.EasyDAClient

EasyAEClient ED35FC37-84EE-47BD-
ADBA-BAA195B9B211

OPCLabs.EasyAEClient.5.1 OPCLabs.EasyAEClient

Default Instance

Instead of explicitly instantiating the EasyDAClient (or EasyAEClient) objects, you can

also use a single, pre-made instance of it, resulting in shorter code. You can access it

as a DefaultInstance static property on EasyDAClient (or EasyAEClient), and it

contains a default, shared instance of the client object.

Use this property with care, as its usability is limited. Its main use is for testing, and

for non-library application code where just a single instance is sufficient.

The default instance is not suitable for Windows Forms or similar environments,

where a specific SynchronizationContext may be used with each form.

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 29 of 91

We also do not recommend using the default instance for library code, due to

conflicts that may arise if your library sets some instance parameters which may not

be the same as what other libraries or the final application expects.

User Interface Objects

In QuickOPC.NET, you instantiate a user interface object in Windows Forms

applications by dragging the appropriate component from the Toolbox to the

designer surface. The designer creates code that instantiates the component, assigns

a reference to it to a field in the parent component, and sets its properties as

necessary. You can then use designer’s features such as the Properties grid to

manipulate the component.

To add the user interface components to the Toolbox (you only need to this once):

Right-click on the Toolbox, and select “Choose Items…”. In the “Choose Toolbox

Items” dialog, select “.NET Framework Components” tab, and look for

“OpcDAItemDialog”, “ OpcDAPropertyDialog”, and “OpcServerDialog” in the Name

column. Check the boxes next to them, and press OK. The OpcDAItemDialog,

OpcDAPropertyDialog, and OpcServerDialog items should appear in the Toolbox

(note: they will only be visible in the proper context, i.e. when you have selected an

appropriate parent component in the designer, or when you check “Show All” in the

Toolbox context menu).

In QuickOPC-COM, you instantiate a user interface object in the same way as

computational object (described above). Following table contains information

needed to do so.

Class Name CLSID ProgID Version
Independent
ProgID

OPCUserBrowseMachine E13AC35E-CF9A-
466a-A939-
D02964A2AEF3

OPCLabs.UserBrowseMachine

OPCUserBrowseServer 122D4D0E-BC48-
45c2-B5CB-
51D9D703F364

OPCLabs.UserBrowseServer

OPCUserBrowseItem 19BB7459-5D7F-
4d63-A119-
A2803C1B2568

OPCLabs.UserBrowseItem

OPCUserSelectItem 4E619C32-AF14-
4d69-8056-
02B4BE13A47F

OPCLabs.UserSelectItem

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 30 of 91

Stateless Approach

OPC is inherently stateful. For starters, connections to OPC servers are long-living

entities with rich internal state, and other objects in OPC model such as OPC groups

have internal state too. QuickOPC hides most of the OPC’s stateful nature by

providing a stateless interface for OPC tasks.

This transformation from a stateful to a stateless model is actually one of the biggest

advantages you gain by incorporating QuickOPC. There are several advantages to a

stateless model from the perspective of your application. Here are the most

important of them:

 The code you have to write is shorter. You do not have to make multiple

method calls to get to the desired state first. Most common tasks can be

achieved simply by instantiating an object (needed just once), and making a

single method call.

 You do not have to worry about reconstructing all the state after some

failure. QuickOPC reconstructs the OPC state silently in background when

needed. This again brings tremendous savings in coding.

The internal state of QuickOPC components (including e.g. the connections to OPC

servers) outlives the lifetime of the individual instances of the main EasyDAClient or

EasyAEClient object. You can therefore create an instance of this object as many

times as you wish, without incurring performance penalty to OPC communications.

This characteristic comes extremely handy in programming server-side Web

applications and similar scenarios: You can implement your code on page level, and

make OPC requests from the page code itself. The OPC connections will outlive the

page round-trips (if this was not the case, the OPC server would become bogged

down quickly).

Simultaneous Operations

OPC works with potentially large quantities of relatively small data items that may

change rapidly in time. In order to handle this kind of load effectively, it is necessary

to operate on larger “chunks” of data whenever possible. When there is an operation

to be performed on multiple elements, the elements should be passed to the

operation together, and the results obtained together as well.

In order to ensure high efficiency, your code should allow the same. This is achieved

by calling methods that are designed to work on multiple items in parallel. Where it

makes sense, QuickOPC provides such methods, and they contain the work Multiple

in their names. For example, for reading a value of an OPC item, a method named

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 31 of 91

ReadItemValue exists on the EasyDAClient object. There is also a corresponding

method named ReadMultipleItemValues which can read multiple OPC items at once.

It is strongly recommended that you call the methods that are designed for

simultaneous operation wherever possible.

Methods for simultaneous operation return an array of OperationResult objects, or

its derivatives. Each element in the output array corresponds to an element in the

input array with the same index. Some methods or method overloads take multiple

arguments, where some arguments are common for all elements, and one of them is

the input array that has parts that are different for each element. There is always one

method overload that takes a single argument which is an array of

OperationArguments objects; this is the most generic method overload that allows

each element be fully different from other elements.

Error Handling

Various kinds of errors may be returned by QuickOPC, e.g.:

 Errors returned by system calls when performing OPC-related operations.

 Errors returned by COM/DCOM infrastructure, including RPC and network-

related errors.

 Errors reported by the OPC server you are connecting to.

 Errors detected by the QuickOPC library.

In general, you cannot safely prevent these errors from happening. Many conditions

external to your code can cause OPC failures, e.g. network problems, improper OPC

server configuration, etc. For this reason, you should always expect than OPC

operation can fail.

QuickOPC.NET defines one new type of exception, called OpcException, derived from

Exception object. This exception is for all errors arising from OPC operations.

More details about the cause of the problem can be found by interrogating the

InnerException property of OpcException, or by examining the ErrorCode property.

In most scenarios, however, your code will be handling all OpcException-s in the

same way.

If you need to display a meaningful error message to the user, or log it for further

diagnostics, it is best to take the OpcException instance, obtain its base exception

using GetBaseException method, and retrieve its Message property. The error

message obtained in this way is closest to the actual cause of the problem.

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 32 of 91

QuickOPC.NET even tries to fill in the error text in cases when the system or OPC

server has not provided it.

It should be noted that for QuickOPC.NET operations, OpcException is the ONLY

exception class that your code should be explicitly catching when calling QuickOPC

methods or getting properties. This is because you cannot safely influence or predict

whether the exception will or will not be thrown. Other kinds of exception, such as

those related to argument checking, should NOT be caught by typical application

code, because they either indicate a programming bug in your code, or an

irrecoverable system problem.

In QuickOPC-COM, the actual error handling concepts (and related terminology)

depend strongly on the programming language and development tool you are using,

for example:

 In C++, if you are using the raw interfaces provided by the type library, each

function call will return an HRESULT value that you will test using macros

such as SUCCEEDED() or FAILED().

 In C++, if you are using “Compiler COM Support” (the #import directive),

errors will be converted to exceptions of _com_error type.

 In VBScript, failed function calls will either generate run-time error (with On

Error Goto 0), or fill in the Err object with information about the error (with

On Error Resume Next).

Errors and Multiple-Element Operations

Some methods on the main EasyDAClient object operate on multiple elements (such

as OPC items) at once, and they also return results individually for each of the input

elements. Such methods cannot simply throw an exception when there is a problem

with processing one of the elements, because throwing an exception would make it

impossible to further process other elements that are not causing errors. In addition,

exception handling is very slow, and we need some efficient mechanism for dealing

with situations when there may be multiple errors occurring at once.

For this reason, methods that work on multiple elements return an array of results,

and each result may have an Exception associated with it. If this exception is a null

reference, then there has been no error processing the operation on the element,

and other data contained in the result object is valid. When the exception is not a null

reference, it contains the actual error.

For multiple-element operations, the element-level exceptions are not wrapped in

OpcException, because there is no need for you to distinguish them from other

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 33 of 91

exception types in the catch statement. If there is an exception inside a multiple-level

operation, it is always an exception related to OPC operations. The Exception

property of the result object in a multiple-element operation therefore contains what

would be the InnerException of the OpcException thrown for a single-element

operation.

Exceptions that are not related to OPC operations, such as argument-checking

exceptions, are still thrown directly from the multiple-element operations, i.e. they

are not returned in the OperationResult object.

Errors in Subscriptions

Similarly as with multiple-element operations (above), errors in subscriptions are

reported to your code by means of an Exception property in the event arguments

passed to your event handler or callback method. If this exception is a null reference,

then there has been no error related to the event notification, and other data

contained in the event arguments object is valid. When the exception is not a null

reference, it contains the actual error.

In event notifications, the exceptions are not wrapped in OpcException, because

there is no need for you to distinguish them from other exception types in the catch

statement. If there is an exception related to the event notification, it is always an

exception related to OPC operations.

Helper Types

The types described here do not directly perform any OPC operations, but are

commonly used throughout QuickOPC for properties and method arguments.

Dictionary Object

An associative array is used at several places in QuickOPC-COM interface, providing a

way to store items associated with unique keys. The associative array is represented

using a Dictionary object provide by Microsoft in their Scripting Runtime Library. For

details, see http://msdn.microsoft.com/en-us/library/x4k5wbx4(VS.85).aspx.

Time Periods

Many method arguments and properties describe time periods, such as update rates,

delays, timeouts etc. For consistency, they are all integers, and they are expressed as

number of milliseconds.

http://msdn.microsoft.com/en-us/library/x4k5wbx4(VS.85).aspx

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 34 of 91

Some method arguments and properties (but only some – see Reference

documentation for each method argument or property) allow a special value that

represents an “infinite” time period.

In QuickOPC.NET, the value for “infinite” time period is equal to Timeout.Infinite

(from System.Threading namespace).

Note: Time periods should not be confused with absolute time information, which is
usually expressed by means of DateTime structure.

In QuickOPC-COM, the value for “infinite” time period is equal to -1.

Note: Time periods should not be confused with absolute time information, which is
usually expressed by means of Windows DATE data type.

OPC Quality

OPC represents a quality of a data value by several bit-coded fields. QuickOPC.NET

encapsulates the OPC quality in a DAQuality class. The bit fields in OPC quality are

inter-dependent, making it a bit complicated to encode or decode it. The DAQuality

type takes care of this complexity. In addition, it offers symbolic constants that

represent the individual coded options, and also has additional functionality such as

for converting the quality to a string.

The following table attempts to depict the elements of DAQuality and their relations:

DAQuality

property QualityChoice QualityChoiceBitField
{ get; }
IsBad()
IsGood()
IsUncertain()

SubStatus property DALimitChoice LimitBitField
{ get; set; }

property DAStatusChoice StatusBitField
{ get; set; }
SetQualityAndSubStatus(…)

You can see that the StatusBitField is actually consisted of QualityChoiceBitField, and

a SubStatus. But the semantics of SubStatus is highly dependent on

QualityChoiceBitField, and therefore the SubStatus cannot be accessed separately.

For the same reason, you cannot directly set the QualityChoiceBitField without

providing a value for SubStatus at the same time. Instead, you can call

SetQualityAndSubstatus method to modify the two fields at the same time.

Note that OPC Alarms and Events “borrows” the quality type from OPC Data Access,

and therefore the DAQuality structure is used with OPC Alarms and Events as well.

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 35 of 91

Value, Timestamp and Quality (VTQ)

The combination of data value, timestamp and quality (abbreviated sometimes as

VTQ) is common in OPC. This combination is returned e.g. when an OPC item is read.

Note that according to OPC specifications, the actual data value is only valid when the

quality is Good or Uncertain (with certain exception).

QuickOPC has a DAVtq object for this combination. The object provides access to

individual elements of the VTQ combination, and also allows common operations

such as comparisons. It can also be easily converted to a string containing textual

representation of all its elements.

If you only want a textual representation for a data value from the VTQ, use the

DisplayValue method. This is recommended over trying to extract the Value property

and converting it to string, as you will automatically receive an empty string if the

value is not valid according to OPC rules (e.g. Bad quality), and a null reference case is

handled as well.

Result Objects

Result objects are returned by methods that work on multiple elements

simultaneously such as EasyDAClient.ReadMultipleItems. Such methods return an

array of OperationResult objects, or an array of objects derived from

OperationResult. This approach is chosen, among other reasons, because the

method cannot throw an exception if an operation on a single element fails.

Each OperationResult has an Exception property, which indicates the outcome of the

operation. If the Exception is a null reference, the operation has completed

successfully. There is also a State property, which contains user-defined information

that you have passed to the method.

The objects derived from OperationResult have additional properties, which contain

the actual results in case the operation was successful. Such objects are e.g.

ValueResult (contains a data value), or DAVtqResult (contains value, timestamp, and

quality combination).

Variant Type (VarType)

In some places in OPC, your code needs to indicate which type of data you expect to

receive back, or (in the opposite direction), you receive indication about which type

of data certain piece of information is. OPC uses Windows VARTYPE for this

(describes a data contained in Windows VARIANT).

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 36 of 91

QuickOPC.NET gives you a .NET encapsulation for indicating variant data types, so

that you do not have to look up and code in the numeric values of Windows

VARTYPE. Instead, wherever you see that a method argument, a property, or other

element is of VarType type, you can supply one of the constants defined in the

VarType. For example, VarType.I2 denotes a 16-bit signed integer, VarType.R4

denotes a 32-bit float, and VarType.BStr denotes a string. For arrays of values, use

logical ‘or’ to combine the element type with VarType.Array constant.

Note: Microsoft.NET framework contains a similar type,

System.Runtime.InteropServices.VarEnum. The types have some similarities, but

should not be confused.

QuickOPC-COM gives you an enumeration for indicating variant data types, so that

you do not have to look up and code in the numeric values of Windows VARTYPE.

Instead, wherever you see that a method argument, a property, or other element

accepts a data type, you can supply one of the constants defined in the VarType

enumeration. For example, VTI2 denotes a 16-bit signed integer, VTR4 denotes a 32-

bit float, and VTBStr denotes a string. For arrays of values, use logical ‘or’ to combine

the element type with VTArray constant. Note, however, that the enumeration

symbols are only accessible if you reference or import the EasyOPC Type Library, and

not all languages and tools are capable of doing it.

Element Objects

Element objects contain all information gathered about some OPC entity. They are

typically returned by browsing methods. There are following types of element

objects:

 ServerElement object contains information gathered about an OPC server.

 DANodeElement object contains information gathered about an OPC node

(branch or leaf in OPC Data Access server's address space).

 DAPropertyElement contains information gathered about an OPC Data

Access property.

 AEAttributeElement contains information gathered about an OPC Alarms and

Events attribute.

 AECategoryElement contains information gathered about an OPC Alarms and

Events category.

 AEConditionElement contains information gathered about an OPC Alarms

and Events condition.

 AENodeElement object contains information gathered about an OPC node

(areas or source in OPC Alarms and Events server's address space).

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 37 of 91

 AESubconditionElement contains information gathered about an OPC Alarms

and Events subcondition.

Element objects are also returned when you invoke one of the common OPC dialogs

for selecting OPC server, OPC-DA item or an OPC-DA property.

Descriptor Objects

A descriptor object contains information that fully specifies certain OPC entity (but

does not contain any “extra” information that is not needed to identify it uniquely).

Descriptor objects are used by some method overloads to reduce the number of

individual arguments, and to organize them logically. There are following types of

descriptor objects:

 ServerDescriptor contains information necessary to identify and connect to

an OPC server, such as the server's ProgID.

 DAItemDescriptor contains information necessary to identify an OPC item,

such as its Item Id.

If you have received an element object (e.g. from browsing methods or common OPC

dialogs), you can convert it to a descriptor object. For example, there is a constructor

for ServerDescriptor object that accepts ServerElement as an input, and there is a

constructor for DAItemDescriptor object that accepts DANodeElement as an input,

too.

Parameter Objects

Parameter objects are just holders for settings that influence certain aspect of how

QuickOPC works (for example, timeouts). There are several types of parameter

objects (such as Timeouts, HoldPeriods, and more). For more information, see the

“Setting Parameters” and “Advanced Topics” chapters, and also the Reference

documentation.

Note that there is no way for your code to create new instances of parameter objects

(and assign them to properties of main EasyDAClient or EasyAEClient object). Your

code simply manipulates properties of parameter objects that are already created

and made available to you.

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 38 of 91

OPC Data Access Tasks

This chapter gives you guidance in how to implement the common tasks that are

needed when dealing with OPC Data Access server from the client side. You achieve

these tasks by calling methods on the EasyDAClient object.

Obtaining Information

Methods described in this chapter allow your application to obtain information from

the underlying data source that the OPC server connect to (reading OPC items), or

from the OPC server itself (getting OPC property values). It is assumed that your

application already somehow knows how to identify the data it is interested in. If the

location of the data is not known upfront, use methods described in Browsing for

Information chapter first.

Reading from OPC Items

In OPC Data Access, reading data from OPC items is one of the most common tasks.

The OPC server generally provides current data for any OPC item in form of a Value,

Timestamp and Quality combination (VTQ).

If you want to read the current VTQ from a specific OPC item, call the ReadItem

method. You pass in individual arguments for machine name, server class, ItemID,

and an optional data type. You will receive back a DAVtq object holding the current

value, timestamp, and quality of the OPC item. The ReadItem method returns the

current VTQ, regardless of the quality. You may receive an Uncertain or even Bad

quality (and no usable data value), and your code needs to deal with such situations

accordingly.

In QuickOPC.NET, you can also pass ServerDescriptor and DAItemDescriptor objects

in place of individual arguments to the ReadItem method.

For reading VTQs of multiple items simultaneously in an efficient manner, call the

ReadMultipleItems method (instead of multiple ReadItem calls in a loop). You will

receive back an array of DAVtqResult objects.

In QuickOPC.NET, you can pass in a ServerDescriptor object and an array of

DAItemDescriptor objects, or an array of DAItemArguments objects, to the

ReadMultipleItems method.

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 39 of 91

In QuickOPC-COM, in place of each ReadItem argument, you can pass in an array of

values, or (if the value is the same for the whole operation, e.g. the machine name), a

single value as with the ReadItem call, to the ReadMultipleItems method.

Some applications need the actual data value for further processing (e.g. for

computations that need be performed on the values), even if it involves waiting a

little for the quality to become Good. For such usage, call the ReadItemValue

method, passing it the same arguments as to the ReadItem method. The method will

wait until the OPC item’s quality becomes Good (or until a timeout expires), and you

will receive back an Object (a VARIANT in QuickOPC-COM) holding the actual data

value.

For reading just the data values of multiple data values (with wait for Good quality) in

an efficient manner, call the ReadMultipleItemValues method (instead of multiple

ReadItemValue calls in a loop). You will receive back an array of ValueResult objects.

In QuickOPC.NET, you can pass in a ServerDescriptor object and an array of

DAItemDescriptor objects, or an array of DAItemArguments objects, to the

ReadMultipleItemValues method.

In QuickOPC-COM, in place of each ReadItemValue argument, you can pass in an

array of values, or (if the value is the same for the whole operation, e.g. the machine

name), a single value as with the ReadItemValue call, to the

ReadMultipleItemValues method.

Note: You can set the DesiredValueAge in ClientMode property to control how “old”

may be the values you receive by reading from OPC items. Be aware that it is

physically impossible for any system to always obtain fully up-to-date values.

Getting OPC Property Values

Each OPC item has typically associated a set of OPC properties with it. OPC properties

contain additional information related to the item.

If you want to obtain the value of specific OPC property, call the GetPropertyValue

method, passing it the machine name, server class, the ItemId, and a PropertyId. You

will receive back an Object (a VARIANT in QuickOPC-COM) containing the value of the

requested property.

In QuickOPC.NET, you can also pass in the ServerDescriptor inplace of the machine

name and server class strings.

There are many property-related methods in EasyOPC.NET Extensions component.

Please refer to a chapter in this document that describes EasyOPC.NET Extensions.

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 40 of 91

For obtaining multiple properties simultaneously in an efficient manner, call the

GetMultiplePropertyValues method (instead of multiple GetPropertyValue calls in a

loop). The arguments are similar, except that in place of a single PropertyId you pass

in an array of them. You will receive back an array of Object values (a SAFEARRAY of

VARIANT values in QuickOPC-COM).

Modifying Information

Methods described in this chapter allow your application to modify information in the

underlying data source that the OPC server connects to (writing OPC items). It is

assumed that your application already somehow knows how to identify the data it is

interested in. If the location of the data is not known upfront, use methods described

Browsing for Information chapter first.

Writing to OPC Items

If you want to write a data value into a specific OPC item, call the WriteItemValue

method, passing it the data value you want to write, arguments for machine name,

server class, ItemID, and an optional data type.

In QuickOPC.NET, you can also pass in the ServerDescriptor and DAItemDescriptor

objects in place of corresponding individual arguments.

For writing data values into multiple OPC items in an efficient manner, call the

WriteMultipleItemValues method.

In QuickOPC.NET, you pass in an array of DAItemValueArgument objects, each

specifying the location of OPC item, and the value to be written.

In QuickOPC-COM, in place of each WriteItemValue argument, you can pass in an

array of values, or (if the value is the same for the whole operation, e.g. the machine

name), a single value as with the WriteItemValue call.

Some newer OPC servers allow a combination of value, timestamp, and quality (VTQ)

be written into their items. If you need to do this, call WriteItem or

WriteMultipleItems method.

Browsing for Information

QuickOPC contains methods that allow your application to retrieve and enumerate

information about OPC servers that exist on the network, and data available within

these servers. Your code can then make use of the information obtained, e.g. to

accommodate to configuration changes dynamically.

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 41 of 91

Note that if you just want to allow your user to browse interactively for various OPC

elements, you can simply code your application to invoke the common dialogs that

are already implemented in QuickOPC (they are described further down in this

document). The methods we are describing here are for programmatic browsing,

with no user interface (or when you provide the user interface by your own code).

Browsing for OPC Servers

If you want to retrieve a list of OPC Data Access servers registered on a local or

remote computer, call the BrowseServers method, passing it the name or address of

the remote machine (use empty string for local computer).

In QuickOPC.NET, you will receive back a ServerElementCollection object. If you want

to connect to this OPC server later in your code by calling other methods, use the

built-in conversion of ServerElement to String, and pass the resulting string as a

serverClass argument either directly to the method call, or to a constructor of

ServerDescriptor object.

In QuickOPC-COM, you will receive back a Dictionary of ServerElement objects. If you

want to connect to this OPC server later in your code by calling other methods, obtain

the value of ServerElement.ServerClass property, and pass the resulting string as a

serverClass argument to the method call that accepts it.

Each ServerElement contains information gathered about one OPC server found on

the specified machine, including things like the server’s CLSID, ProgID, vendor name,

and readable description.

Browsing for OPC Nodes (Branches and Leaves)

Items in an OPC server are typically organized in a tree hierarchy (address space),

where the branch nodes serve organizational purposes (similar to folders in a file

system), while the leaf nodes correspond to actual pieces of data that can be

accessed (similar to files in a file system) – the OPC items. Each node has a “short”

name that is unique among other branches or leaves under the same parent branch

(or a root). Leaf nodes can be fully identified using a “long” ItemID, which determines

the OPC item without a need to further qualify it with its position in the tree. ItemIDs

may look like “Device1.Block101.Setpoint”, however their syntax and meaning is fully

determined by the particular OPC server they are coming from.

QuickOPC gives you methods to traverse through the address space information and

obtain the information available there. It is also possible to filter the returned nodes

by various criteria, such as node name matching certain pattern, or a particular data

type only, or writeable items only, etc.

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 42 of 91

If you want to retrieve a list of all sub-branches under a given branch (or under a

root) of the OPC server, call the BrowseBranches method. In QuickOPC.NET, you will

receive back a DANodeElementCollection object. In QuickOPC-COM, you will receive

back a Dictionary of DANodeElement objects. Each DANodeElement contains

information gathered about one sub-branch node, such as its name, or indication

whether it has children. Similarly, if you want to retrieve a list of leaves under a given

branch (or under a root) of the OPC server, call the BrowseLeaves method. You will

also receive back a DANodeElementCollection object (in QuickOPC.NET) or a

Dictionary of DANodeElement objects(in QuickOPC-COM), this time containing the

leaves only. You can find information such as the Item ID from the DANodeElement

of any leaf, and pass it further to methods like ReadItem or SubscribeItem.

The most generic address space browsing method is BrowseNodes. It combines the

functionality of BrowseBranches and BrowseLeaves, and it also allows the widest

range of filtering options by passing in an argument of type DANodeFilter (in

QuickOPC.NET), or individual arguments for data type filter and access rights filter (in

QuickOPC-COM).

Browsing for OPC Access Paths

Access paths are somewhat obsolete feature of OPC Data Access specification, and

few OPC server actually use it; but if a particular OPC server does use access paths,

specifying the proper access path together with ItemID may be the only way to

retrieve the data you want.

If you want to retrieve a list of possible access paths available for a specific OPC item,

call the BrowseAccessPaths method, passing it the information about the OPC server,

and the ItemID. You will receive back an array of strings; each element of this array is

an access path that you can use with methods such as ReadItem or SubscribeItem.

In QuickOPC.NET, you can also pass the access path to a constructor of

DAItemDescriptor object and later use that descriptor with various methods.

Browsing for OPC Properties

Each OPC item has typically associated a set of OPC properties with it. OPC properties

contain additional information related to the item. The OPC specifications define a

set of common properties; however, each OPC server is free to implement some

more, vendor-specific properties as well.

If you want to retrieve a list of all properties available on a given OPC item, call the

BrowseProperties method, passing it the ItemID you are interested in. In

QUickOPC.NET, you will receive back a DAPropertyElementCollection object. In

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 43 of 91

QuickOPC-COM, you will receive back a Dictionary of DAPropertyElement objects.

Each DAPropertyElement contains information about one OPC property, such as its

(numeric) PropertyId, data type, or a readable description. The PropertyId can be

later used as an argument in calling methods such as GetPropertyValue.

Subscribing for Information

If your application needs to monitor changes of certain process value (OPC item), it

can subscribe to it, and receive notifications when the value changes. For

performance reasons, this approach is preferred over repeatedly reading the item’s

value (polling). Note that QuickOPC has internal optimizations which greatly reduce

the negative effects of polling, however subscription is still preferred.

QuickOPC contains methods that allow you to subscribe to OPC items, change the

subscription parameters, and unsubscribe.

Subscribing to OPC Items

Subscription is initiated by calling either SubscribeItem or SubscribeMultipleItems

method. For any change in the subscribed item’s value, your application will receive

the ItemChanged event notification, described further below. Obviously, you first

need to hook up event handler for that event, and in order to prevent event loss, you

should do it before subscribing. Alternatively, you can pass a callback method into the

SubscribeItem or SubscribeMultipleItems call.

Values of some items may be changing quite frequently, and receiving all changes

that are generated is not desirable for performance reasons; there are also physical

limitations to the event throughput in the system. Your application needs to specify

the requested update rate, which effectively tells the OPC server that you do not

need to receive event notifications any faster than that. For OPC items that support

it, you can optionally specify a percent deadband; only changes that exceed the

deadband will generate an event notification.

In QuickOPC.NET, the requested update rate, percent deadband, and data type are all

contained in a DAGroupParameters object.

If you want to subscribe to a specific OPC item, call the SubscribeItem method. You

can pass in individual arguments for machine name, server class, ItemID, data type,

requested update rate, and an optional percent deadband. Usually, you also pass in a

State argument of type Object (in QuickOPC.NET) or VARIANT (in QuickOPC-COM).

When the item’s value changes, the State argument is then passed to the

ItemChanged event handler in the EasyDAItemChangedEventArgs object. The

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 44 of 91

SubscribeItem method returns a subscription handle that you can later use to change

the subscription parameters, or unsubscribe.

In QuickOPC.NET, you can also pass in a combination of ServerDescriptor,

DAItemDescriptor and DAGroupParameters objects, in place of individual

arguments.

The State argument is typically used to provide some sort of correlation between

objects in your application, and the event notifications. For example, if you are

programming an HMI application and you want the event handler to update the

control that displays the item’s value, you may want to set the State argument to the

control object itself. When the event notification arrives, you simply update the

control indicated by the State property of EasyDAItemChangedEventArgs, without

having to look it up by ItemId or so.

To subscribe to multiple items simultaneously in an efficient manner, call the

SubscribeMultipleItems method (instead of multiple SubscribeItem calls in a loop).

You receive back an array of HandleResult objects (containing the subscription

handles).

In QuickOPC.NET, you pass in an array of DAItemGroupArguments objects (each

containing information for a single subscription to be made), to the

SubscribeMultipleItems method.

In QuickOPC-COM, you pass in an array or arrays of arguments (each element

containing information for a single subscription to be made, to the

SubscribeMultipleItems method.

Note: It is NOT an error to subscribe to the same item twice (or more times), even

with precisely same parameters. You will receive separate subscription handles, and

with regard to your application, this situation will look no different from subscribing

to different items. Internally, however, the subscription made to the OPC server will

be optimized (merged together) if possible.

There is also an event called MultipleItemsChanged that can deliver multiple item

changes in one call to the event handler. See Multiple Notifications in One Call in

Advanced Topics for more.

Changing Existing Subscription

It is not necessary to unsubscribe and then subscribe again if you want to change

parameters of existing subscription (such as its update rate). Instead, change the

parameters by calling the ChangeItemSubscription method, passing it the

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 45 of 91

subscription handle, and the new parameters in form of DAGroupParameters object

(in QuickOPC.NET) or individually a requested update rate, and optionally a percent

deadband (in QuickOPC-COM).

For changing parameters of multiple subscriptions in an efficient manner, call the

ChangeMultipleItemSubscriptions method.

Unsubscribing from OPC Items

If you no longer want to receive item change notifications, you need to unsubscribe

from them. To unsubscribe from a single OPC item, call the UnsubscribeItem method,

passing it the subscription handle.

To unsubscribe from multiple OPC items in an efficient manner, call the

UnsubscribeMultipleItems method (instead of calling UnsubscribeItem in a loop),

passing it an array of subscription handles, or an array of HandleArguments objects.

You can also unsubscribe from all items you have previously subscribed to (on the

same instance of EasyDAClient object) by calling the UnsubscribeAllItems method.

If you are no longer using the parent EasyDAClient object, you do not necessarily

have to unsubscribe from the items, but it is highly recommended that you do so.

In QuickOPC.NET, the subscriptions will otherwise be internally alive until the .NET

CLR (garbage collector) decides to finalize and destroy the parent EasyDAClient

object (if ever); you cannot, however, determine that moment. You can alternatively

call the Dispose method of the EasyDAClient object’s IDisposable interface, which

will unsubscribe from all items for you.

In QuickOPC-COM, the subscriptions will otherwise be internally alive. You can

alternatively release all references to the EasyDAClient object, which will unsubscribe

from all items for you.

Item Changed Event or Callback

When there is a change in a value of an OPC item you have subscribed to, the

EasyDAClient object generates an ItemChanged event. For subscription mechanism

to be useful, you should hook one or more event handlers to this event.

To be more precise, the ItemChanged event is actually generated in other cases, too.

First of all, you always receive at least one ItemChanged event notification after you

make a subscription; this notification either contains the initial data for the item, or

an indication that data is not currently available. This behavior allows your

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 46 of 91

application to rely on the component to provide at least some information for each

subscribed item.

Secondly, the ItemChanged event is generated every time the component loses

connection to the item, and when it reestablishes the connection. This way, your

application is informed about any problems related to the item, and can process

them accordingly if needed.

You will also receive the ItemChanged notification if the quality of the item changes

(not just its actual data value).

The ItemChanged event notification contains an EasyDAItemChangedEventArgs

argument. You will find all kind of relevant data in this object. Some properties in this

object contain valid information no matter what kind of change the notification is

about. These properties are ServerDescriptor, ItemDescriptor, GroupParameters,

Handle, and State.

For further processing, your code should always inspect the value of Exception

property of the event arguments. If this property is set to a null reference, the

notification carries an actual change in item’s data, and the Vtq property has the new

value, timestamp and quality of the item, in form of DAVtq object. If the Exception

property is not a null reference, there has been an error related to the item, and the

Vtq property is not valid. In such case, the Exception property contains information

about the problem.

The ItemChanged event handler is called on a thread determined by the

EasyDAClient component. For details, please refer to “Multithreading and

Synchronization” chapter under “Advanced Topics”.

In short, however, we can say that if you are writing e.g. Windows Forms application,

the component takes care of calling the event handler on the user interface thread of

the form, making it safe for your code to update controls on the form, or do other

form-related actions, from the event handler.

Using Callback Methods Instead of Event Handlers

Using event handlers for processing notifications is a standard way with many

advantages. There also situations, however, where event handlers are not very

practical. For example, if you want to do fundamentally different processing on

different kinds of subscriptions, you end up with all notifications being processed by

the same event handler, and you need to put in extra code to distinguish between

different kinds of subscriptions they come from. Event handlers also require

additional code to set up and tear down.

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 47 of 91

In order to overcome these problems, QuickOPC components allow you to pass in

a delegate for a callback method to subscription methods. There are subscription

methods overloads that accept the callback method parameter. The callback method

has the same signature (arguments) as the event handler, and is called by the

component in addition to invoking the event handler (if you do not hook a handler to

the event, only the callback method will be invoked). You can therefore pass in the

delegate for the callback method right into the subscription method call, without

setting up event handlers.

The callback method can also be specified using an anonymous delegate or a lambda

expression, i.e. without having to declare the method explicitly elsewhere in your

code. This is especially useful for short callback methods.

For subscription methods that work with multiple subscriptions at once, there is also

a Callback property in the arguments objects that you can use for the same purpose.

Note that if you specify a non-null callback parameter to the subscription method,

the callback method will be invoked in addition to the event handlers. If you use both

event handlers and callback methods in the same application, and you do not want

the event handlers to process the notifications that are also processed by the callback

methods, you can either

- test the Callback property in the event arguments of the event handler, and if

it is not a null reference, the event has been processed by the callback method

and you can ignore it, or

- use two instances of the EasyDAClient (or EasyAEClient) object, and set up

event handlers on one instance and use the callback methods on the other

instance.

Setting Parameters

While the most information needed to perform OPC tasks is contained in arguments

to method calls, there are some component-wide parameters that are not worth

repeating in every method call, and also some that have wider effect that influences

more than just a single method call. You can obtain and modify these parameters

through properties on the EasyDAClient object.

In QuickOPC-COM, you can also modify these parameters by the EasyOPC Options

Utility, available from the Start menu.

Following are instance properties, i.e. if you have created multiple EasyDAClient

object, each will have its own copy of them:

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 48 of 91

 ClientMode: Specifies common parameters such as allowed and desired

methods of accessing the data in the OPC server.

 HoldPeriods: Specifies optimization parameters that reduce the load on the

OPC server.

 UpdateRates: Specifies the "hints" for OPC update rates used when other

explicit information is missing.

 Timeouts: Specifies the maximum amount of time the various operations are

allowed to take.

 SynchronizationContext: Contains synchronization context used by the

object when performing event notifications.

Instance properties can be modified from your code.

In QuickOPC.NET, if you have placed the EasyDAClient object on the designer surface,

most instance properties can also be directly edited in the Properties window in

Visual Studio.

In QuickOPC-COM, the EasyOPC Options utility is used to set the default values of

instance properties. Your code can override the defaults if needed.

Following properties are static, i.e. shared among all instances of EasyDAClient

object:

 EngineParameters: Contains global parameters such as frequencies of

internal tasks performed by the component.

 MachineParameters: Contains parameters related to operations that target a

specific computer but not a specific OPC server, such as browsing for OPC

servers using various methods.

 ClientParameters: Contains parameters that influence operations that target

a specific OPC server a whole.

 TopicParameters: Contains parameters that influence operations that target

a specific OPC item.

Static properties can only be modified from your code (in QuickOPC.NET) or using the

EasyOPC Options utility (in QuickOPC-COM). If you want to modify any of the static

properties, you must do it before the first instance of EasyDAClient or EasyAEClient

object is created.

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 49 of 91

Please use the Reference documentation (and EasyOPC Options Help in QuickOPC-

COM) for details on meaning of various properties and their use.

OPC Common Dialogs

QuickOPC.NET contains a set of Windows Forms dialog boxes for performing common

OPC-related tasks such as selecting an OPC server or OPC item.

The dialog objects are all derived from System.Windows.Forms.CommonDialog,

providing consistent and well-known programming interface to use.

Computer Browser Dialog

OPC servers are usually deployed on the network, and accessed via DCOM. In order

to let the user select the remote computer where the OPC server resides, you can use

the ComputerBrowseDialog object.

Call the ShowDialog method, and if the result is equal to DialogResult.OK, the user

has selected the computer, and its name can be retrieved from the SelectedName

property.

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 50 of 91

OPC Server Dialog

If you do not know upfront which OPC server to connect to, and do not have this

information from any other source, your application will need to allow the user select

the OPC server(s) to work with. The OPC Server Dialog allows the user to select the

OPC server interactively from the list of OPC Data Access servers installed on a

particular machine.

Set the MachineName property to the name of the computer that is to be browsed,

and call the ShowDialog method. If the result is equal to DialogResult.OK, the user

has selected the OPC Data Access server, and information about it can be retrieved

from the SelectedServer property.

OPC-DA Item Dialog

The OPC-DA Item Dialog allows the user to interactively select the OPC item residing

in a specific OPC server.

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 51 of 91

Use the Server property to specify the OPC Data Access server whose items are to be

browsed, and call the ShowDialog method. If the result is equal to DialogResult.OK,

the user has selected the OPC item, and information about it can be retrieved from

the SelectedNode property.

OPC-DA Property Dialog

The OPC-DA Property Dialog allows the user to interactively select the OPC property

on a specific OPC item.

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 52 of 91

Use the Server property to specify the OPC Data Access server whose items are to be

browsed, set the ItemId property to the OPC Item Id needed, and then call the

ShowDialog method. If the result is equal to DialogResult.OK, the user has selected

the OPC property, and information about it can be retrieved from the

SelectedProperty property.

OPC User Objects

QuickOPC-COM contains a set of Windows dialog boxes for performing common OPC-

related tasks such as selecting an OPC server or OPC item.

The programming interfaces for the dialog objects are all similar, providing consistent

programming interface to use.

Computer Browser Dialog

OPC servers are usually deployed on the network, and accessed via DCOM. In order

to let the user select the remote computer where the OPC server resides, you can use

the OPCUserBrowseMachine object.

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 53 of 91

Call the RunMe method, and if the result is equal to 1 (DialogResult.OK), the user has

selected the computer, and its name can be retrieved from the MachineName

property.

OPC Server Browse Dialog

If you do not know upfront which OPC server to connect to, and do not have this

information from any other source, your application will need to allow the user select

the OPC server(s) to work with. The OPC Server Browse Dialog allows the user to

select the OPC server interactively from the list of OPC Data Access servers installed

on a particular machine.

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 54 of 91

Set the MachineName property to the name of the computer that is to be browsed,

and call the RunMe method. If the result is equal to 1 (DialogResult.OK), the user has

selected the OPC Data Access server, and information about it can be retrieved from

the ServerClass property.

OPC-DA Item Browse Dialog

The OPC-DA Item Browse Dialog allows the user to interactively select the OPC item

residing in a specific OPC server.

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 55 of 91

Use the MachineName and ServerClass properties to specify the OPC Data Access

server whose items are to be browsed, and call the RunMe method. If the result is

equal to 1 (DialogResult.OK), the user has selected the OPC item, and information

about it can be retrieved from the ItemId property.

OPC-DA Item Select Dialog

The OPC-DA Item Select Dialog combines together all functionality that allows the

user to completely select the OPC item. The selection starts with machine name, and

continues with server class (ProgID), Item ID and so on.

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 56 of 91

After the user is finished with the selection, your code can retrieve the information

from properties of the object.

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 57 of 91

OPC Alarms and Events Tasks

This chapter gives you guidance in how to implement the common tasks that are

needed when dealing with OPC Alarms and Events server from the client side. You

achieve these tasks by calling methods on the EasyAEClient object.

Obtaining Information

Methods described in this chapter allow your application to obtain information from

the underlying data source that the OPC Alarms and Events server connects to, or

from the OPC server itself (getting condition state). It is assumed that your

application already somehow knows how to identify the data it is interested in. If the

location of the data is not known upfront, use methods described in Browsing for

Information chapter first.

Getting Condition State

In OPC Alarms and Events, information is usually provided in form of event

notifications, especially for transient (simple and tracking) events. For condition-

related events, however, it is also possible to get (upon request) information about

the current state of a specified condition.

If you want to obtain the current state information for the condition instance in an

OPC Alarms and Events sever, call the GetConditionState method. You pass in

individual arguments for machine name, server class, fully qualified source name,

condition name, and optionally an array of event attributes to be returned. You will

receive back an AEConditionState object holding the current state information about

an OPC condition instance.

In QuickOPC.NET, you can alternatively pass in a ServerDescriptor in place of machine

name and server class arguments.

Modifying Information

Methods described in this chapter allow your application to modify information in the

underlying data source that the OPC server connects to or in the OPC server itself

(acknowledging conditions). It is assumed that your application already somehow

knows how to identify the data it is interested in. If the location of the data is not

known upfront, use methods described Browsing for Information chapter first.

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 58 of 91

Acknowledging a Condition

If you want to acknowledge a condition in OPC Alarms and Events server, call the

AcknowledgeCondition method. You pass in individual arguments for machine name,

server class, fully qualified source name, condition name, and an active time and

cookie corresponding to the transition of the condition you are acknowledging.

Optionally, you can pass in acknowledger ID (who is acknowledging the condition),

and a comment string.

In QuickOPC.NET, you can alternatively pass in a ServerDescriptor in place of machine

name and server class arguments.

Browsing for Information

QuickOPC-COM contains methods that allow your application to retrieve and

enumerate information about OPC Alarms and Events servers that exist on the

network, and data available within these servers. Your code can then make use of the

information obtained, e.g. to accommodate to configuration changes dynamically.

The methods we are describing here are for programmatic browsing, with no user

interface (or when the user interface is provided by our own code).

Browsing for OPC Servers

If you want to retrieve a list of OPC Alarms and Events servers registered on a local or

remote computer, call the BrowseServers method, passing it the name or address of

the remote machine (use empty string for local computer).

In QuickOPC.NET, you will receive back a ServerElementCollection object. If you want

to connect to this OPC server later in your code by calling other methods, use the

built-in conversion of ServerElement to String, and pass the resulting string as a

serverClass argument either directly to the method call, or to a constructor of

ServerDescriptor object.

In QuickOPC-COM, you will receive back a Dictionary of ServerElement objects. If you

want to connect to this OPC server later in your code by calling other methods, obtain

the value of ServerElement.ServerClass property, and pass the resulting string as a

serverClass argument to the method call that accepts it.

Each ServerElement contains information gathered about one OPC server found on

the specified machine, including things like the server’s CLSID, ProgID, vendor name,

and readable description.

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 59 of 91

Browsing for OPC Nodes (Areas and Sources)

Information in an OPC Alarms and Events server is organized in a tree hierarchy

(process space), where the branch nodes (event areas) serve organizational purposes

(similar to folders in a file system), while the leaf nodes actually generate events

(similar to files in a file system) – they are called event sources. Each node has a

“short” name that is unique among other branches or leaves under the same parent

branch (or a root). Event sources can be fully identified using a “fully qualified” source

name, which determines the OPC event source without a need to further qualify it

with its position in the tree. OPC event source may look a process tag (e.g. “FIC101”,

or “Device1.Block101”), or possibly a device or subsystem identification; their syntax

and meaning is fully determined by the particular OPC server they are coming from.

QuickOPC gives you methods to traverse through the address space information and

obtain the information available there. It is also possible to filter the returned nodes

by a server specific filter string.

If you want to retrieve a list of all event areas under a given parent area (or under a

root) of the OPC server, call the BrowseAreas method. In QuickOPC.NET, you will

receive an AENodeElementCollection object. In QuickOPC-COM, you will receive back

a Dictionary of AENodeElement objects. Each AENodeElement contains information

gathered about one sub-area node, such as its name, or an indication whether it has

children.

Similarly, if you want to retrieve a list of event sources under a given parent area (or

under a root) of the OPC server, call the BrowseSources method. You will also receive

back an AENodeElementCollection object (in QuickOPC.NET) or a Dictionary of

AENodeElement objects (in QuickOPC-COM), this time containing the event sources

only. You can find information such as the fully qualified source name from the

AENodeElement of any event source, extract it and pass it further to methods like

GetConditionState or SubscribeEvents.

Querying for OPC Event Categories

Each OPC Alarms and Events server supports a set of specific event categories. The

OPC specifications define a set of recommended categories; however, each OPC

server is free to implement some more, vendor-specific event categories as well.

If you want to retrieve a list of all categories available in a given OPC server, call the

QueryEventCategories method. In QuickOPC.NET, you will receive back an

AECategoryElementCollection object; in QuickOPC-COM, you will receive back a

Dictionary of AECategoryElement objects. Each AECategoryElement contains

information about one OPC event category, such as its (numeric) CategoryId,

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 60 of 91

readable description, and associated event conditions and attributes. The CategoryId

can be later used when creating an event filter, and is provided to you in event

notifications.

Subscribing for Information

If your application needs to be informed about events occurring in the process and

provided by the OPC Alarms and Events server, it can subscribe to them, and receive

notifications.

QuickOPC contains methods that allow you to subscribe to OPC events, change the

subscription parameters, and unsubscribe.

Subscribing to OPC Events

Subscription is initiated by calling the SubscribeEvents method. The component will

call handlers for Notification event for each event that satisfies the filter criteria of

the created subscription. Obviously, you first need to hook up event handler for that

event, and in order to prevent event loss, you should do it before subscribing.

Events may be generated quite rapidly. Your application needs to specify the

notification rate, which effectively tells the OPC Alarms and Events server that you do

not need to receive event notifications any faster than that.

If you want to subscribe to particular set of OPC Events, call the SubscribeEvents

method. You can pass in individual arguments for machine name, server class, and

notification rate. Optionally, you can specify a subscription filter; it is a separate

object of AESubscriptionFilterType that you create using CreateSubscriptionFilter

method. Other optional parameters are attributes that should be returned in event

notifications (separate set of attributes for each event category is needed), and the

“active” and “refresh when active” flags. You can also pass in a State argument of any

type. When any event notification is generated, the State argument is then passed to

the Notification event handler in the EasyAENotificationEventArgs object.

In QuickOPC.NET, you can alternatively pass in a ServerDescriptor in place of machine

name and server class arguments. You can also replace the individual notification

rate, subscription filter, and returned attributes arguments by passing in an

AESubscriptionParameters object.

The State argument is typically used to provide some sort of correlation between

objects in your application, and the event notifications. For example, if you are

programming an HMI application and you want the event handler to update the

control that displays the event messages, you may want to set the State argument to

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 61 of 91

the control object itself. When the event notification arrives, you simply update the

control indicated by the State property of EasyAENotificationEventArgs, without

having to look it up.

The “refresh when active” flag enables a functionality that is useful if you want to

keep a “copy” of condition states (that primarily exist in the OPC server) in your

application. When this flag is set, the component will automatically perform a

subscription Refresh (see further below) after the connection is first time established,

and also each time it is reestablished (after a connection loss). This way, the

component assures that your code will get notifications that allow you to

“reconstruct” the state of event conditions at any given moment.

Note: It is NOT an error to subscribe to the same set of events twice (or more times),

even with precisely the same parameters. You will receive separate subscription

handles, and with regard to your application, this situation will look no different from

subscribing to different set of events.

Changing Existing Subscription

It is not necessary to unsubscribe and then subscribe again if you want to change

parameters of existing subscription (such as its notification rate). Instead, change the

parameters by calling the ChangeEventSubscription method, passing it the

subscription handle, and the new parameters (notification rate, and optionally a filter

and an “active” flag).

Unsubscribing from OPC Events

If you no longer want to receive event notifications, you need to unsubscribe from

them. To unsubscribe from events that you have previously subscribed to, call the

UnsubscribeEvents method, passing it the subscription handle.

You can also unsubscribe from all events you have previously subscribed to (on the

same instance of EasyAEClient object) by calling the UnsubscribeAllEvents method.

If you are no longer using the parent EasyAEClient object, you should unsubscribe

from the events, or dispose of the EasyAEClient object, which will do the same for

you. Otherwise, the subscriptions will internally be still alive, and may cause problems

related to COM reference counting.

Refreshing Condition States

Your application can obtain the current state of all conditions which are active, or

which are inactive but unacknowledged, by requesting a “refresh” from an event

subscription. The component will respond by sending the appropriate event

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 62 of 91

notifications to the application, via the event handlers, for all conditions selected by

the event subscription filter. When invoking the event handler, the component will

indicate whether the invocation is for a refresh or is an original notification. Refresh

and original event notifications will not be mixed in the same event notifications.

If you want to force a refresh, call the RefreshEventSubscription method, passing it

the subscription handle.

Notification Event

When an OPC Alarms and Events server generates an event, the EasyAEClient object

generates a Notification event. For subscription mechanism to be useful, you should

hook one or more event handlers to this event.

To be more precise, the Notification event is actually generated in other cases, too -

if there is any significant occurrence related to the event subscription. This can be for

three reasons:

1. You receive the Notification when a successful connection (or re-connection)

is made. In this case, the Exception and Event properties of the event

arguments are null references.

2. You receive the Notification when there is a problem with the event

subscription, and it is disconnected. In this case, the Exception property

contains information about the error. The Event property is a null reference.

3. You receive one additional Notification after the component has sent you all

notifications for the forced “refresh”. In this case, the RefreshComplete

property of the event arguments is set to True, and the Exception and Event

properties contain null references.

The notification for the Notification event contains an EasyAENotificationEventArgs

argument. You will find all kind of relevant data in this object. Some properties in this

object contain valid information under all circumstances. These properties are

ServerDescriptor, SubscriptionParameters, Handle, and State. Other properties, such

as Event, contain null references when there is no associated information for them.

When the Event property is not a null reference, it contains an AEEvent object

describing the detail of the actual OPC event received from the OPC Alarms and

Events server.

Before further processing, your code should always inspect the value of Exception

property of the event arguments. If this property is not a null reference, there has

been an error related to the event subscription, the Exception property contains

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 63 of 91

information about the problem, and the Event property does not contain a valid

object.

If the Exception property is a null reference, the notification may be informing you

about the fact that a “forced” refresh is complete (in this case, the RefreshComplete

property is True), or that an event subscription has been successfully connected or re-

connected (in this case, the Event property is a null reference). If none of the

previous applies, the Event property contains a valid AEEvent object with details

about the actual OPC event generated by the OPC server.

Pseudo-code for the full Notification event handler may look similar to this:

if notificationEventArgs.Exception is not null then
 An error occurred and the subscription is disconnected, handle it (or
ignore)
else if notificationEventArgs.RefreshComplete then
 A “refresh” is complete; handle it (only needed if you are invoking a
refresh explicitly)
else if notificationEventArgs.Event is null then
 Subscription has been successfully connected or re-connected, handle
it (or ignore)
else
 Handle the OPC event, details are in notificationEventArgs.Event. You
may use notificationEventArgs.Refresh flag for distinguishing refreshes from
original notifications.

The Notification event handler is called on a thread determined by the EasyAEClient

component. For details, please refer to “Multithreading and Synchronization” chapter

under “Advanced Topics”.

There is also an event called MultipleNotifications that can deliver multiple

notifications in one call to the event handler. See Multiple Notifications in One Call in

Advanced Topics for more.

Using Callback Methods Instead of Event Handlers

The subscription methods also allow you to directly specify the callback method

(delegate) to be invoked for each event notification you are subscribing to.

For detailed discussion on this subject, please refer to “Using Callback Methods

Instead of Event Handlers” under the “OPC Data Access Tasks” chapter. All

information presented there applies to OPC Alarms and Events as well.

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 64 of 91

Setting Parameters

While the most information needed to perform OPC tasks is contained in arguments

to method calls, there are some component-wide parameters that are not worth

repeating in every method call, and also some that have wider effect that influences

more than just a single method call. You can obtain and modify these parameters

through properties on the EasyAEClient object, and (in QuickOPC-COM) by EasyOPC

Options Utility.

Following are instance properties, i.e. if you have created multiple EasyAEClient

object, each will have its own copy of them:

 ClientMode: Allows you to influence how EasyOPC performs various

operations on OPC Alarms and Events servers.

 HoldPeriods: Specifies optimization parameters that reduce the load on the

OPC server.

Instance properties can be modified from your code.

In QuickOPC.NET, if you have placed the EasyAEClient object on the designer surface,

the instance properties can also be directly edited in the Properties window in Visual

Studio.

In QuickOPC-COM, the default values of instance properties can be set using the

EasyOPC Options utility. Your code can still override the defaults if needed.

Following properties are static, i.e. shared among all instances of EasyAEClient

object:

 EngineParameters: Contains global parameters such as frequencies of

internal tasks performed by the component.

 MachineParameters: Contains parameters related to operations that target a

specific computer but not a specific OPC server, such as browsing for OPC

servers using various methods.

 ClientParameters: Contains parameters that influence operations that target

a specific OPC server a whole.

 LinkParameters: Contains parameters that influence how EasyOPC works

with live OPC event subscriptions.

Static properties can only be modified from your code (in QuickOPC.NET) or using the

EasyOPC Options utility (in QuickOPC-COM).

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 65 of 91

Please use the Reference documentation (and, in QuickOPC-COM, the EasyOPC

Options Help) for details on meaning of various properties and their use.

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 66 of 91

EasyOPC.NET Extensions

EasyOPC.NET Extensions is a pack of .NET classes that adds more functionality to the

EasyOPC.NET component. It is built upon and relies on EasyOPC.NET, so in fact you

could build all these extensions yourself, but it is meant to provide a ready-made,

verified code for useful “shortcut” methods to achieve common tasks.

Usage

In order to use the EasyOPC.NET Extensions, you need to reference the

OpcLabs.EasyOpcClassicExtensions assembly in your project.

A significant part of the EasyOPC.NET Extensions functionality is provided in form of

so-called Extension Methods. In languages that support them (including C#, VB.NET),

extension methods will appear as additional methods on the classes that are being

extended. For example, if you reference OpcLabs.EasyOpcClassicExtensions assembly

in your project, the EasyDAClient class will appear as having many more new

methods that you can choose from. This way, you can write a code that call e.g.

GetDataTypePropertyValue (extension) method on the EasyDAClient object,

although the method is actually located in the EasyDAClientExtension class which

you do not even have to be aware of.

In languages that do not support extension method syntax, it is still possible to use

them, but they need to be called as static method on the extension class, and you

provide the object reference as an additional argument. In the above example, you

would call EasyDAClientExtension.GetDataTypePropertyValue instead, and pass it

the EasyDAClient object as the first argument.

Data Access Extensions

OPC Properties

Type-safe Access

With EasyOPC.NET Extensions, you can use type-safe methods that allow obtaining a

value of an OPC property value already converted to the specified type, with methods

such as EasyDAClient.GetPropertyValueInt32. There is such a method for each

primitive type, named GetPropertyValueXXXX, where XXXX is the name of the type.

Using these methods allows your code be free of unnecessary conversions.

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 67 of 91

A corresponding set of methods also exists for one-dimensional arrays of primitive

types. Such methods are named GetPropertyValueArrayOfXXXX, where XXXX is the

name of the element type. For example,

EasyDAClient.GetPropertyValueArrayOfString will obtain a value of a property as an

array of strings.

Well-known Properties

A common scenario is to work with well-known OPC properties. With EasyOPC.Net

Extensions, you can quickly obtain a value of any well-known OPC property of a given

OPC item, with methods such as EasyDAClient.GetDataTypePropertyValue. All these

methods are named GetXXXXPropertyValue, where XXXX is the name of the

property. The methods also check the value type and convert it to the type that

corresponds to the property. For example, GetDataTypePropertyValue method

returns a VarType, GetScanRatePropertyValue method returns a float, and

GetDescriptionPropertyValue method returns a string.

Alternate Access Methods

The GetPropertyValueDictionary method allows you to obtain a dictionary of

property values for a given OPC item, where a key to the dictionary is the property Id.

You can pass in a set of property Ids that you are interested in, or have the method

obtain all well-known OPC properties. You can then easily extract the value of any

property by looking it up in a dictionary (as opposed to having to numerically index

into an array, as with the base GetMultiplePropertyValues method).

The GetItemPropertyRecord method allows you to obtain a structure filled in with

property values for a given OPC item. It can retrieve all well-known properties at

once, or you can pass in a set of property Ids that you are interested in. You can then

simply use the properties in the resulting DAItemPropertyRecord structure, without

further looking up the values in any way.

The static DAPropertyIDSet class gives you an easy way to provide pre-defined sets of

properties to the above methods. There are well-known sets such as the Basic

property set, Extension set, or Alarms and Events property set. It also allows you to

combine the property sets together (a union operation), with the Add method or the

‘+’ operator.

OPC Items

Type-safe Access

With EasyOPC.NET Extensions, you can use type-safe methods that allow reading an

item value already converted to the specified type, with methods such as

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 68 of 91

EasyDAClient.ReadItemValueInt32. There is such a method for each primitive type,

named ReadItemValueXXXX, where XXXX is the name of the type. Using these

methods allows your code be free of unnecessary conversions. The methods also take

care of passing a proper requested data type to the OPC server.

A corresponding set of methods also exists for one-dimensional arrays of primitive

types. Such methods are named ReadItemValueArrayOfXXXX, where XXXX is the

name of the element type. For example, EasyDAClient.ReadItemValueArrayOfInt32

will read from an item as an array of 32-bit signed integers.

You can also use type-safe methods that allow writing an item value of a specified

type, with methods such as EasyDAClient.WriteItemValueInt32. There is such a

method for each primitive type, named WriteItemValueXXXX, where XXXX is the

name of the type. Using these methods allows your code be free of unnecessary

conversions. The methods also take care of passing a proper requested data type to

the OPC server.

A corresponding set of methods also exists for one-dimensional arrays of primitive

types. Such methods are named WriteItemValueArrayOfXXXX, where XXXX is the

name of the element type. For example, EasyDAClient.WritetemValueArrayOfInt32

will write into an item as an array of 32-bit signed integers.

Software Toolbox Extender Replacement

QuickOPC.NET can serve as a replacement for Software Toolbox Extender

(www.opcextender.net) component. For further details, please refer to a separate

document installed with the product.

http://www.opcextender.net/

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 69 of 91

Application Deployment

This chapter describes how to deploy applications developed with use of QuickOPC.

For some uses, it is acceptable to perform the deployment manually. In other cases,

you will find yourself writing an installer for your application, and you will probably

want to include the installation of QuickOPC components in it as well.

Deployment Elements

Assemblies

Depending on which assemblies you have referenced in your application, you may

need one or more of the following files be installed with your application:

 OpcLabs.BaseLib.dll

 OpcLabs.EasyOpcClassic.dll

 OpcLabs.EasyOpcClassicExtensions.dll

 OpcLabs.EasyOpcClassicForms.dll

 OpcLabs.EasyOpcClassicInternal.dll

Please refer to “Product Parts” chapter for description of purpose of individual

assemblies. You will find them under the Assemblies subdirectory in the installation

directory of the product.

The assemblies need to be placed so that the referencing software (your application)

can find them, according to standard Microsoft .NET loader (Fusion) rules. The easiest

is to simply place the assembly files alongside (in the same directory as) your

application file.

Development Libraries and COM Components

Depending on which components you have referenced in your application, you may

need one or more of the following files be installed with your application:

File Name(s) Description Additional Action(s)

easyopcl.exe EasyOPC Local Server/Service Register by running with
/RegServer or /Service
switch (depending on your
needs)

easyopci.dll EasyOPC In-process Server Register using RegSvr32

easyopcm.dll EasyOPC Messages Register using RegSvr32

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 70 of 91

easyopct.dll EasyOPC Type Library Register using RegSvr32

OPCUserObjects.exe OPC User Objects
Component and Type Library

Register by running with
/Register or /RegServer
Service switch (these
switches are equivalent)

Please refer to “Product Parts” chapter for description of purpose of individual

libraries and components. You will find them under the Bin subdirectory in the

installation directory of the product.

The EasyOPC Type Library is needed with either EasyOPC Local Server/Service or

EasyOPC In-process Server. The EasyOPC Messages file is needed if you want to view

the descriptive texts of categories and events generated by the EasyOPC Local

Server/Service in the event viewer.

You can choose the placement of the files freely. The registration stores the path

information into the registry, and that’s how the system finds them consequently.

Usually, you may have a folder calling something like ‘Bin’ in your application to hold

these files, but that is just a recommendation.

Management Tools

Depending on which tools the users of your application will use, you may need one or

more of the following files be installed with your application:

File Name(s) Description Additional Action(s)

EasyOpcOptions.chm
EasyOpcOptions.exe

EasyOPC Options Utility (none)

EventLogOptions.chm,
EventLogOptions.exe

Event Log Options Utility (none)

You can choose the placement of the files freely. The only condition is that the CHM

file has to be in the same folder as the corresponding EXE file. Usually, you may have

a folder calling something like ‘Bin’ in your application to hold these files, but that is

just a recommendation.

Prerequisites

When using QuickOPC.NET: Besides the actual library assemblies, QuickOPC.NET

requires that following software is present on the target system:

1. Microsoft .NET Framework 3.5 with Service Pack 1 (Full or Client Profile), or

Microsoft .NET Framework 4 (Full or Client Profile).

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 71 of 91

Needed when: Always (the choice depends on the framework that you

target).

2. Microsoft Visual C++ 2008 Service Pack 1 Redistributable Package ATL

Security Update. It is located in the “Redist” folder under the QuickOPC

installation. You need to select the package appropriate for the targeted

platform (x86 or x64), or both. If you are going to redistribute it within your

own installer, you can call it with “/q” on the command line, for silent

installation.

Needed when: Always.

IMPORTANT: Only use the package from the “Redist” folder in

QuickOPC installation. Do not use the package from Visual Studio

installation or other sources on the Web, as there are several

versions of it, and only one is guaranteed to work.

3. OPC Core Components 3.00 Redistributable (x86 or x64), version 3.00.105.0

or later. It is located in the “Redist” folder under the QuickOPC installation.

You need to select the package appropriate for the targeted platform (x86 or

x64).

IMPORTANT: On 64-bit system, only install the 64-bit package, even

if you intent to use some 32-bit OPC components. The 64-bit

package includes everything that is needed for 32-bit OPC as well.

If you are going to redistribute it within your own installer, you can call it via

MSIEXEC.EXE with “/q REBOOT=Suppress” on the command line, for silent

installation.

Needed when: Always.

Note that due to a bug in the OPC Core Components installation, it

may silently skip installation of certain critical components (such as

OPC COM proxy/stub) if .NET Framework 2.0 or later isn’t present on

the system at the time of installation. Always make sure that .NET Framework

is installed, BEFORE installing OPC Core Components.

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 72 of 91

When using QuickOPC-COM: Besides the development libraries and COM

components, QuickOPC-COM requires that following software is present on the

target system:

1. Microsoft .NET Framework 3.5 with Service Pack 1 (Full or Client Profile), or

Microsoft .NET Framework 4 (Full or Client Profile).

QuickOPC-COM does not directly require the Microsoft .NET Framework 3.5,

but OPC Core Components setup may fail without it.

1. Microsoft Visual C++ 2010 Redistributable Package. It is located in the

“Redist” folder under the QuickOPC installation. You need to select the

package appropriate for the targeted platform (x86 or x64). If you are going

to redistribute it within your own installer, you can call it with “/q” on the

command line, for silent installation.

2. OPC Core Components 3.00 Redistributable (x86). It is located in the “Redist”

folder under the QuickOPC installation. If you are going to redistribute it

within your own installer, you can call it via MSIEXEC.EXE with “/q

REBOOT=Suppress” on the command line, for silent installation.

Licensing

Proper license (for runtime usage) must be installed on the target computer (the

computer where the product will be running). The License Manager utility is needed

for this. It is contained in LicenseManager.exe file, located under the Bin subdirectory

in the installation directory of the product.

Deployment Methods

Manual Deployment

In order to deploy your application with QuickOPC.NET manually, follow the steps
below:

1. Check that proper version of Microsoft .NET Framework is installed, and if it is

not, install it. Note that QuickOPC-COM also needs the Microsoft .NET

Framework 3.5, for OPC Core Components.

2. Run the QuickOPC installation program, selecting “Production installation”

type.

3. Perform any steps needed to install your own application.

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 73 of 91

4a) Copy the QuickOPC.NET assemblies to their target locations for your

application.

4b) Copy QuickOPC-COM development libraries, COM components and

management tools to their target locations for your application, and perform

additional actions (such as their registration) as described with the respective files.

5. Run the License Manager from the Start menu, and install the runtime

license.

Automated Deployment

The installer for your application should contain following steps:

1. Check that proper version of Microsoft .NET Framework is installed, and if it is

not, instruct the user to install it. Note that QuickOPC-COM also needs the

Microsoft .NET Framework, for OPC Core Components.

2. Only with QuickOPC.NET: Install Microsoft Visual C++ 2008 SP1

Redistributable Package for the appropriate platform, if needed.

3. Install Microsoft Visual C++ 2010 Redistributable Package for the appropriate

platform.

4. Install OPC Core Components 3.00 Redistributable for the appropriate

platform.

5. Perform any steps needed to install your own application.

3. Install QuickOPC.NET assemblies to their target locations for your application.

6. Install LicenseManager.exe (from Bin or Bin\x64)

7. Offer the user an option to run the License Manager.

The user who deploys the application will then:

1. Run your installer and follow the steps.

2. Use the License Manager and install the runtime license.

If the above described procedure for installing the license (presenting the user with

the License Manager utility user interface) does not fit the needs of your application,

please contact your vendor, describe the situation, and ask for alternative license

installation options.

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 74 of 91

Advanced Topics

OPC Specifications

QuickOPC.NET components directly support following OPC specifications:

 all OPC DA (Data Access) 1.0x Specifications (Released)

 all OPC DA (Data Access) 2.0x Specifications (Released)

 all OPC DA (Data Access) 3.0x Specifications (Released)

 OPC Alarms and Events Custom Interface Standard 1.00, 1.01 and 1.10

(Released)

 all OPC Common 1.0x Specifications (Released)

 OPC Common 1.10 Specification (Draft)

QuickOPC.NET components support following OPC specifications indirectly:

 OPC UA (Universal Architecture) 1.00 Specifications for Data Access

 OPC UA (Universal Architecture) 1.01 Specifications for Data Access

OPC-UA (Universal Architecture)

The Unified Architecture (UA) is the next generation OPC standard that provides a

cohesive, secure and reliable cross platform framework for access to real time and

historical data and events.

A separate product, QuickOPC-UA, allows native connections to OPC Unified

Architecture servers.

QuickOPC-Classic is not a native OPC UA client, but you can still use it to connect to

OPC UA servers, using so-called UA COM Proxy that is shipped with the product as

part of OPC UA COM Interop Components.

The OPC UA COM Interop Components from OPC Foundation make it possible for

existing COM-based applications to communicate with UA applications. OPC Labs is

using them to add UA support to existing products. Support for OPC UA COM Interop

Components is not currently provided.

The components that allows COM clients (such as QuickOPC-COM and QuickOPC.NET)

to talk to UA server is called the UA Proxy (or UA COM Proxy). It is a DCOM server

that implements the different OPC COM specifications. A COM client (QuickOPC) uses

DCOM to talk to this proxy, usually on the local machine (i.e. the same machine

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 75 of 91

where the client is), and the proxy translates OPC COM calls into UA calls, and fetches

the information as required from the UA server. It is a dynamic operation – all the

information about address space and data values is retrieved dynamically from the

UA server.

The UA COM Proxy is a DCOM server, meaning that it has its own ProgID and CLSID

(class ID). However, there needs to be some mapping between the particular ProgID

and a particular UA endpoint. The UA COM proxy relies on a concept of a Pseudo-

server, which maps a ProgID to a specific UA endpoint, which is stored in the

configuration file. The configuration tool that is made available as part of OPC UA

COM Interop Components has the ability to select a UA endpoint and create one of

these pseudo-servers that a COM client can then connect to. This endpoint

configuration file is stored on disk in XML format.

This file also stores state information, which is necessary for replicating COM client

configuration across multiple machines. If you set up a client on a particular machine,

talking to a particular UA server, and do all the necessary configuration, and you then

want to take the configuration and install it on multiple other machines, you can

simply copy that endpoint configuration file along. The file contains the ProgID and

CLSID of the pseudo-server, and the endpoint information.

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 76 of 91

The configuration tool for OPC UA COM Proxy can be found in your Start menu, under

OPC Foundation → UA SDK 1.01 → UA Configuration Tool. In order to make a UA

server visible to COM clients through the UA COM Proxy, select the “Manage COM

Interop” tab, press the “Wrap UA Server” button, and fill in the information required

by the program. You need to specify the endpoint information for a UA server

(possibly using a UA discovery mechanism), the UA connection parameters, and

finally the COM pseudo-server CLSID and ProgID (the tool offers reasonable defaults).

After you have finished this step, the pseudo-server appears in the list, and OPC COM

clients (QuickOPC-COM, QuickOPC.NET) can connect to it.

Note: The QuickOPC setup program has the “OPC UA COM Interop Components”

option turned off by default, because it has other dependencies and effects on the

system that can complicate the typical setup. If you want to connect to OPC-UA

servers, make sure that you enable “OPC UA COM Interop Components” in the

installation first.

OPC Interoperability

The QuickOPC.NET and QuickOPC-COM components have been extensively tested for

OPC interoperability, with various OPC servers from many vendors, and on different

computing environments. The tests also include regular participation in OPC

Foundation’s Interoperability Workshops, where OPC software is intensively “grilled”

for interoperability.

Having tried so many different OPC servers to connect to, we have encountered

different (though still correct) interpretations of the same OPC specifications, and

also certain common (and less common) divergences from the specifications.

QuickOPC.NET components do not try to “turn down” any OPC server for compliance

problems. Just the opposite: Wherever possible, we have taken a “relaxed” approach

to how the OPC servers are written, and allow and accept the above mentioned

variations. This gives QuickOPC.NET even wider interoperability scope.

Based on the interoperability results (which can be viewed on OPC Foundation’s web

site), QuickOPC.NET and QuickOPC-COM have also been granted the OPC

Foundations’ “Self-tested for Compliance” logo. Note that in contrast with the logo

title, the conditions of this logo program actually require the OPC client software be

tested in presence and with cooperation of OPC Foundation’s Test Lab delegate.

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 77 of 91

Event Logging

QuickOPC-COM is capable of logging various errors and events, using the standard

Windows mechanisms, or other means. By default, only the most important events

are logged.

You can use the Event Log Options utility (available from Start menu) to influence

which events get logged, and also to select logging into a plain text file instead of

Windows Even Log. The Event Log Options utility has separate documentation and

help file; please refer to it for details on setting the options.

Event logging is only performed by the EasyOPC Local Server/Service component. The

EasyOPC In-process Server component and OPC User Objects do not log any events.

EasyOPC Options Utility

EasyOPC component in QuickOPC-COM comes with predefined settings that are

suitable for most applications. For large-volume operations, or specialized needs, it

may be necessary to fine-tune the settings, using the EasyOPC Options utility. You can

invoke the utility from the Start menu, under the application's program group. The

EasyOPC Options utility has separate documentation and help file; please refer to it

for details on setting the options.

Be aware that the component only "picks up" the EasyOPC options at the startup

time. You should therefore set the proper options in advance, and start the

application afterwards.

EasyOPC Options utility can also be invoked from command line with a /ResetOptions

switch. Doing so acts like pressing the “Factory Defaults” button, but the application

will not display any user interface, and will quickly return the control back. You can

use this feature e.g. in automated installations.

COM Registration and Server Types

The EasyOPC component of QuickOPC-COM can be deployed as following COM server

types:

 In-process Server, or

 Local Server, or

 Service.

There are various advantages and disadvantages of the above options, which are

discussed in details in Microsoft COM materials. In brief, the In-process Server loads

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 78 of 91

the component’s code into the client process, which isolates it from other uses on the

same computer, and provides fastest data exchange between the component and

your code, but there are also security concerns that have to do with the fact the

component has access to your application’s memory. The Local Server and Service

options run in a process that is separate from your application. The Service can be

better controlled while running (started, stopped, etc., using the Service Manager).

The EasyOPC component can be registered as multiple server types at the same time,

e.g. Local Server and In-process Server. The client can then choose which server type

it connects to, or let the COM infrastructure select the server type automatically.

Note that, however, registration as Local Server is mutually exclusive with registration

as Service.

You can use the EasyOPC Options utility to register and unregister the available server

types, except for making a choice between Local Server or Service.

To register EasyOPC component to run as Local Server (and not as Service):

 Open the Command Prompt window.

 Navigate to the “bin” subdirectory of the QuickOPC-COM installation folder.

 Type the following command:

easyopcl /RegServer

To register EasyOPC component to run as Service (and not as Local Server):

 Open the Command Prompt window.

 Navigate to the “bin” subdirectory of the QuickOPC-COM installation folder.

 Type the following command:

easyopcl /Service

Object Serialization

QuickOPC.NET allows you to easily store objects (and object graphs, i.e.

interconnected objects) into files and streams, and also to load them back.

Two types of serialization are supported:

 Basic serialization using Serializable attribute and/or ISerializable interface.

This serialization type is typically used with BinaryFormatter for storing

objects in a binary format.

 XML serialization using XmlSerializer and IXmlSerializable. This serialization

provides objects storage in XML format.

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 79 of 91

Practically all QuickOPC objects (and their collections and dictionaries) can be

serialized and deserialized. For example:

 You can load and store EasyDAClient and EasyAEClient objects (their instance

properties, i.e. various parameters, are serialized).

 You can load and store parameter objects, such as DAGroupParameters.

 You can load and store arguments (and arrays of arguments) passed to

functions, such as lists of items to be subscribed to

(DAItemGroupArguments). This functionality can be used e.g. with storing

lists of subscribed items in file, outside your application code.

 You can load and store results of browsing and querying (e.g.

DANodeElementCollection, AECategoryElementCollection).

 You can load and store results of reading (e.g. DAVtq).

 You can load and store condition states (AEConditionState) and event data

(AEEvent).

 You can load and store all notification data contained in event arguments, for

OPC Data Access item changes (EasyDAItemChangedEventArgs) or OPC

Alarms and Events notifications (EasyAENotificationEventArgs). This

functionality can be used e.g. for logging significant changes and events in the

underlying system.

Asynchronous Operations

All “normal” method calls on EasyOPC object in QuickOPC-COM are performed

synchronously with respect to the caller, i.e. the methods perform their work and the

caller is blocked until the operation is either complete, or times out. Internally the

actual work is performed on a different thread, but this is more or less an

implementation details that does not you much as a developer.

For advanced scenarios, EasyOPC component supports a concept of asynchronous

operations, too. The methods that perform asynchronously are prefixed with the

word Invoke, and they are:

 InvokeReadItem,

 InvokeReadItemValue,

 InvokeWriteItem,

 InvokeWriteItemValue.

It should be made clear that the “asynchronicity” discussed here refers only to the

interaction between your application and the EasyOPC Component. It does NOT refer

to the nature of the calls made by the EasyOPC Components to the target OPC Server.

The usage of various OPC methods such as synchronous and asynchronous operations

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 80 of 91

is controlled separately (see ClientMode in Setting Parameters), and by default,

EasyOPC always prefers the recommended method, i.e. asynchronous read/write

methods, internally. With proper settings, it is perfectly possible to make

synchronous call to EasyOPC that would internally trigger an asynchronous OPC

method, and also vice versa.

All InvokeXXXX methods accept a State among their input arguments, and they all

return an AsyncActivity object. The call to InvokeXXXX returns very quickly, just

initiating the requested operation inside the component. There are two ways how

you can monitor the progress and obtain the actual result of the operation:

 By polling the Completed property of the returned AsyncActivity, you can

determine whether the operation has completed. When completed, the

outcome is available through OperationResult property of the AsyncActivity

object.

 By hooking up an event handler for the OperationCompleted event on the

EasyDAClient object, your code will be notified when the asynchronous

operation completes. The event notification carries an

OperationCompletedEventArgs object that, among other things, contains

OperationResult object which has the actual outcome of the operation.

The type of OperationResult object contained in AsyncActivity or

OperationCompletedEventArgs depends on the actual asynchronous method that

had been invoked. For example, when you call InvokeReadItem, the operation

outcome is of DAVtqResult type.

Note that timeouts apply to asynchronous operations in the same way as to

synchronous operation, and therefore at some moment, every asynchronous

operation always completes, though it may be with timeout (or some other) error.

There is also an event called MultipleOperationsComplete that can deliver multiple

results in one call to the event handler. See Multiple Notifications in One Call for

more.

Multiple Notifications in One Call

QuickOPC offers the possibility to process multiple event notifications in one call to

an event handler. For applications that involve working with events generated with

high frequency, this approach may improve the efficiency and therefore throughput,

however the precise performance needs to be measured for each application, and is

highly influenced by other factors (such as the code in the event handler, and the way

it accessed the event arguments).

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 81 of 91

QuickOPC processes events in “chunks”, and this gives it the opportunity to merge

multiple event notifications into a single call. For each event that has a handler for

individual calls, QuickOPC also provides a complementary event handler that delivers

multiple notifications in a single call. The complementary event also has a different

type for its arguments. The correspondence is described in a table below.

Object Individual Notifications Multiple Notifications in One Call

Handler
Name

Arguments Type Handler Name Arguments Type

EasyDAClient Operation-
Completed (*)

OperationCompleted-
EventArgs

MultipleOperations
-Completed

MultipleOperationsCompleted-
EventArgs

ItemChanged EasyDAItemChanged-
EventArgs

MultipleItems-
Changed

EasyDAMultipleItemsChanged-
EventArgs

EasyAEClient Notification EasyAENotification-
EventArgs

Multiple-
Notifications

EasyAEMultipleNotifications-
EventArgs

 (*) OperationCompleted event is available in QuickOPC-COM only.

The event arguments types for events bearing multiple notifications are all

constructed the same: They have only one member, a property called ArgsArray. This

property contains an array of what would be the event arguments of individual

notifications. The event handler is supposed to loop through this array sequentially

and process its elements as they would be event arguments of separate calls. The

elements of the array should be processed from beginning to the end, as this order

corresponds to the time order in which the individual calls would be made.

Internally, the component “chops” the event stream by event type, so that only

events of the same type are delivered together. The component always repeatedly

calls the handler for individual notifications first (if such handler exists), and then

proceeds to call the handler for multiple notifications (if it exists). Although it is

possibly to hook to both handlers on the same object, such practice would rarely if

ever make any sense. Always hook to either the handler for individual notifications,

or the handler for multiple notifications, but not both.

Internal Optimizations

OPC is quite “sensitive” to proper usage, with regard to efficiency. QuickOPC

performs many internal optimizations, and uses the knowledge of proper approaches

and procedures to effectively handle the communication with OPC servers.

Here are some of the optimizations implemented in QuickOPC:

 Wherever possible, OPC operations are performed on multiple elements at

once.

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 82 of 91

 OPC items with similar update rates are put into a common OPC group.

 OPC items with similar percentage deadbands are put into a common OPC

group.

 OPC items are not removed from OPC groups immediately, but only if not

used for certain amount of time.

 OPC item data is held in memory, and if fresh enough, the value from

memory is taken, and no OPC call is made to satisfy the Read request.

 OPC asynchronous calls are preferred over synchronous calls.

 Minimum update rates are enforced, so that the system cannot be easily

overloaded.

 Multiple uses of the same OPC server or same OPC item in the user

application are merged into a single request to the OPC.

 Internal queues are used to make sure that OPC callbacks cannot be blocked

by user code.

Failure Recovery

The OPC communication may fail in various ways, or the OPC client may get

disconnected from the OPC server. Here are some examples of such situations:

 The OPC server may not be registered on the target machine – permanently,

or even temporarily, when a new version is being installed.

 The DCOM communication to the remote computer breaks due to unplugged

network cable.

 The remote computer running the OPC server is shut down, or restarted, e.g.

for security update.

 The configuration of the OPC server is changed, and the OPC item referred to

by the OPC clients no longer exists. Later, the configuration could be changed

again and the OPC item may reappear.

 The OPC server indicates a serious failure to the OPC client.

 The OPC server asks its clients to disconnect, e.g. for internal reconfiguration.

QuickOPC handles all these situations, and many others, gracefully. Your application

receives an error indication, and the component internally enters a “wait” period,

which may be different for different types of problems. The same operation is not

reattempted during the wait period; this approach is necessary to prevent system

overload under error conditions. After the wait period elapses, QuickOPC will retry

the operation, if still needed at that time.

All this logic happens completely behind the scenes, without need to write a single

line of code in your application. QuickOPC maintains information about the state it

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 83 of 91

has created inside the OPC server, and re-creates this state when the OPC server is

disconnected and then reconnected. Objects like OPC groups and OPC items are

restored to their original state after a failure.

Even if you are using the subscriptions to OPC items or events, QuickOPC creates

illusion of their perseverance. The subscriptions outlive any failures; you do not have

to (and indeed, you should not) unsubscribe and then subscribe again in case of error.

After you receive event notification which indicates a problem, simply stay

subscribed, and the values will start coming in again at some future point.

Timeout Handling

The core QuickOPC methods (ReadItem, ReadItemValue, WriteItemValue, and their

counterparts that work with multiple items at once) are all implemented as

synchronous function calls with respect to the caller, i.e. they perform some

operation and then return, passing the output to the caller at the moment of return.

However, this does not mean that the component makes only synchronous calls to

OPC servers while you are calling its methods. Instead, QuickOPC works in

background (in separate threads of execution) and only uses the method calls you

make as "hints" to perform proper data collection and modifications.

Internally, QuickOPC maintains connections to requested OPC servers and items, and

it establishes the connections when you ask for reading or writing of certain OPC

item. QuickOPC eventually disconnects from these servers and items if they are no

longer in use or if their count goes beyond certain limits, using its own LRU-based

algorithm (Least Recently Used).

When you call any of the core QuickOPC methods, the component first checks

whether the requested item is already connected and available inside the

component. If so, it uses it immediately (for reading, it may provide a cached value of

it). At the same time, the request that you just made by calling the method is used for

dynamic decisions on how often the item should be updated by the server etc.

If the item is not available, QuickOPC starts a process to obtain it. This process has

many steps, as dictated by the OPC specifications, and it may take some significant

time. The method call you just made does not wait indefinitely until the item

becomes available. Instead, it uses certain timeout values, and if the item does not

become available within these timeouts, the method call returns. The connection

process is totally independent of the method that was called, meaning that no

problem in the connection process (even an ill-behaved server, or a broken DCOM

connection) can cause the calling method to wait longer than the timeouts dictate.

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 84 of 91

The timeout values are accessible via Timeouts property on the EasyDAClient object.

The explanation of the individual timeout values is provided in the Reference

documentation.

Note that if the nature of the situation allows the component to determine that the

item will NOT be available, the method will return earlier (before the timeouts

elapse) with the proper error indication. This means that not every connection

problem causes the method to actually use the full value of the timeouts. For

example, when the server refuses the item because the item has an incorrect name,

this error is passed immediately to the caller.

It is important to understand that even if the method call times out because the

connection process was not finished in time, the connection process itself is not

cancelled and may continue internally. This means that next time the same item is

requested, it may be instantly available if the connection process has finished. In

other words, the timeouts described above affect the way the method call is

executed with respect to the caller, but do not necessarily affect at all the way the

connection is performed.

When you create an EasyDAClient object, the timeout values are set to reasonable

defaults that work well with reporting or computation type of OPC applications. In

these applications, you know that you MUST obtain certain value within a timeout,

otherwise the application will not be doing what is intended to do: e.g. the report will

not contain valid data, or the computations will not be performed. When the

requested item is not instantly available (for example, the server is not started yet),

the application can afford delays in processing (method calls made to EasyDAClient

object may block the execution for certain time). For this kind of applications, you

may leave the default timeout values, or you may adjust them based on the actual

configuration and performance of your system.

There is also a different kind of applications, typically an HMI screen, which wants to

periodically update the values of controls displayed to the user. The screen usually

contains larger number of these controls that are refreshed in a cyclic way by the

application. If possible, you should use subscription-based updated for these

applications, and in such case the timeouts are of much lesser importance. But, in

some application the subscriptions are not practical, and you resort to periodic

reading (polling). The fact that SOME data is not instantly available should not be

holding the update of others. It is perfectly OK to display an indication that the data is

not available momentarily, and possibly display them in some future refresh cycle

when they become available. For this kind of application, you may prefer to set all the

above mentioned timeout properties to lower values. This assures that the refresh

mk:@MSITStore:C:/DevRoot/OPCLabs/EasyAccess/3.03/EasyOPCDA/Doc/EasyOPCDAHM/EasyOPCDA.chm::/easyda3object.htm
mk:@MSITStore:C:/DevRoot/OPCLabs/EasyAccess/3.03/EasyOPCDA/Doc/EasyOPCDAHM/EasyOPCDA.chm::/easyda3object.htm
mk:@MSITStore:C:/DevRoot/OPCLabs/EasyAccess/3.03/EasyOPCDA/Doc/EasyOPCDAHM/EasyOPCDA.chm::/easyda3object.htm

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 85 of 91

loop always goes quickly over all the controls on the screen, no matter whether the

data is available for them immediately, or only in a postponed fashion.

To simplify this explanation, you can also say that if you need the OPC values for

further *sequential* processing, reasonably long timeouts are needed (and the

defaults should serve well in most situations). If you are refreshing the data on a

cyclic basis by polling, you will probably need to set the timeouts to lower values.

Data Types

OPC Data Access specification is based on COM, and uses Windows VARIANT type

(from COM Automation) for representing data values.

Note: Some OPC servers even use certain VARIANT types that are not officially

supported by Microsoft.

Microsoft .NET Framework has a different concept, and all data is represented using

an Object type. Conversions between the two are available, but not always fully

possible.

In addition, not everything that can be stored in an Object can later be processed by

all .NET tools and languages. Microsoft has created so-called Common Language

Specification (CLS), which has certain rules and restrictions that, if followed,

guarantee cross-language compatibility. Public QuickOPC.NET components

(assemblies) are fully CLS compliant, and that includes the way the data types are

converted to and from OPC types.

QuickOPC.NET converts data from COM to .NET according to following table:

COM type (VARIANT) .NET type (Object)

VT_EMPTY System.Object (null reference)

VT_NULL System.DBNull (singleton class)

VT_I2 System.Int16

VT_I4 System.Int32

VT_R4 System.Single

VT_R8 System.Double

VT_CY System.Decimal

VT_DATE System.DateTime

VT_BSTR System.String

VT_DISPATCH System.Object (not tested)

VT_ERROR System.Int32

VT_BOOL System.Boolean

VT_VARIANT converted type of the target VARIANT

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 86 of 91

VT_DECIMAL System.Decimal

VT_I1 System.Int16

VT_UI1 System.Byte

VT_UI2 System.Int32

VT_UI4 System.Int64

VT_I8 System.Int64

VT_UI8 System.Decimal

VT_INT System.Int32

VT_UINT System.Int64

VT_ARRAY | vtElement System.Array of the converted vtElement type

Types that are highlighted do not convert from COM to their “natural” .NET

counterparts, because the corresponding .NET type is not CLS compliant. Instead, a

“wider” type that is CLS compliant is chosen.

Types not listed in the above table at all are not supported.

Strings are internally represented in Unicode wherever possible.

QuickOPC-COM is meant to be used from applications based on COM Automation,

and in general, any valid VARIANT can be processed by such application. Some

automation tools and programming languages, however, have restrictions on types of

data they can process. If your tool does not support the data type that the OPC server

is using, without QuickOPC, you would be out of luck.

In order to provide the ability to work with widest range of OPC servers and the data

types they use, QuickOPC-COM converts some data types available in OPC. We have

made a research into the data types supported by various tools, and QuickOPC-COM

uses a subset of VARIANT types that is guaranteed to work in most tools that are in

use today (one of the most restrictive languages appears to be VBScript).

Note that the QuickOPC-COM only converts the data that it passes to your application

– either in output arguments of property accessors or methods, or input arguments in

event notifications. In the opposite direction, i.e. for data that your application passes

to QuickOPC-COM, we use very “relaxed” approach, and accept the widest range of

possible data types.

QuickOPC-COM converts data from OPC Data Access according to following table:

VARTYPE
in OPC Data Access

VARTYPE
In QuickOPC-COM

VT_EMPTY VT_EMPTY

VT_NULL VT_NULL

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 87 of 91

VT_I2 VT_I2

VT_I4 VT_I4

VT_R4 VT_R4

VT_R8 VT_R8

VT_CY VT_CY

VT_DATE VT_DATE

VT_BSTR VT_BSTR

VT_DISPATCH VT_DISPATCH

VT_ERROR VT_R8

VT_BOOL VT_BOOL

VT_VARIANT VT_VARIANT

VT_DECIMAL VT_DECIMAL

VT_I1 VT_I2

VT_UI1 VT_UI1

VT_UI2 VT_I4

VT_UI4 VT_R8

VT_I8 VT_R8 (may lose precision)

VT_UI8 VT_R8 (may lose precision)

VT_INT VT_I4

VT_UINT VT_R8

VT_ARRAY | vtElement VT_ARRAY | vtElement

Types that are highlighted are converted to a different data type. If a precise match

does not exist, a “wider” type is chosen.

Types not listed in the above table at all are not supported.

Strings are internally represented in Unicode wherever possible.

Multithreading and Synchronization

The EasyDAClient and EasyAEClient objects and all their related helper objects are

thread-safe.

In QuickOPC.NET, objects in the OpcLabs.EasyOpc.DataAccess.Forms namespace

follow the general Windows Forms rules and conventions, meaning that any public

static (Shared in Visual Basic) type members are thread-safe. Any instance members

are not guaranteed to be thread safe.

In QuickOPC.NET, if you are hooking to the event notifications provided by the

EasyDAClient or EasyAEClient component, or processing these notifications in your

callback methods, make sure that you understand how the component generates

these events and what threading issues it may involve. This is how it works:

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 88 of 91

The EasyDAClient or EasyAEClient object has a SynchronizationContext property.

This property can either be set to a null reference, or to an instance of

SystemThreading.SynchronizationContext class. When the SynchronizationContext

is set to a null reference, EasyDAClient or EasyAEClient calls any event handlers or

callback methods on its own internal thread, which is different from any threads that

you have in your application. When the SynchronizationContext is set to a concrete

instance, the synchronization model implemented by this object is used. The

EasyDAClient or EasyAEClient then typically uses the Post method of this

synchronization context to invoke event handlers in your application.

When the EasyDAClient or EasyAEClient object is created, it attempts to obtain the

synchronization context from the current thread (the thread that is executing the

constructor). As a result, if the thread constructing the EasyDAClient or EasyAEClient

object has a synchronization context associated with it, it will become the value of

the SynchronizationContext property. Otherwise, the SynchronizationContext

property will be set to a null reference. This way, the synchronization context

propagates from the calling thread.

Access to Windows Forms controls is not inherently thread safe. If you have two or

more threads manipulating the state of a control, it is possible to force the control

into an inconsistent state. Other thread-related bugs are also possible, such as race

conditions and deadlocks. It is important to make sure that access to your controls is

performed in a thread-safe way. Thanks to the mechanism described above, this is

done automatically for you, provided that the constructor EasyDAClient or

EasyAEClient object is called on the form’s main thread, as is the case if you place the

EasyDAClient or EasyAEClient component on the form’s design surface in Visual

Studio. This works because by default, Windows Forms sets the synchronization

context of the form’s main thread to a properly initialized instance of

System.Windows.Forms.WindowsFormsSynchronizationContext object.

Similarly, Windows Presentation Foundation (WPF) applications use

System.Windows.Threading.DispatcherSynchronizationContext to achieve the same

thing.

If your application is not based on the above frameworks, or is using them in an

unusual way, you may have to take care of the synchronization issues related to

event notification yourself, either by directly coding the synchronization mechanism,

or by implementing and using a class derived from

SystemThreading.SynchronizationContext.

In QuickOPC-COM, if you are hooking to the event notifications provided by the

EasyDAClient or EasyAEClient component, make sure that you understand how the

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 89 of 91

component generates these events and what threading issues it may involve. The

event notifications generated by EasyDAClient or EasyAEClient object originate from

a thread that may be (and generally is) different from the thread that you used to

create an instance of the object or call its methods. The code in your event handler

must be prepared to deal with it.

A typical issue that arises is that access to Windows controls is not inherently thread-

safe, and should be done from a dedicated thread only. It is important to make sure

that access to your controls is performed in a thread-safe way. This typically involves

setting up some communication mechanism between the event handler code, and a

thread dedicated to handling the user interface of your application.

64-bit Platforms

You can create 32-bit or 64-bit, or platform-independent applications with

QuickOPC.NET. 32-bit applications can also run on 64-bit systems. 64-bit applications

can only run on 64-bit systems. Normally, you will target your application to “Any

CPU”, and the same code will then run on both x86 and x64 platforms.

Supported platforms are x86 (i.e. 32-bit), and x64 (i.e. 64-bit). The product has not

been tested and is not supported on Itanium platform (IA-64).

32-bit and 64-bit Code

QuickOPC.NET assemblies contain certain parts in native 32-bit code (for x86

platform) and in native 64-bit code (for x64 platform). QuickOPC.NET uses a special

technique to merge the so-called mixed mode assemblies (assemblies that contain

both managed and native code) for multiple platforms into a single set of assemblies.

Any application built with QuickOPC.NET assemblies can also be run on 32-bit

Windows, or on 64-bit Windows for x64 processors. By default, such applications run

as 32-bit processes or 32-bit machines and as 64-bit processes on 64-bit machines.

You can also build your code specifically for x86 or x64 platform, if you have such

need.

OPC on 64-bit Systems

Classic OPC is based on Microsoft COM/DCOM, which has originally been designed for

32-bit world, and later ported to and enhanced for 64-bit systems. There are several

issues with COM/DCOM on 64-bit systems and some additional issues specific to OPC.

The most notable issue is the fact that browsing for OPC servers does not always fully

work between 32-bit and 64-bit worlds. This is because the OPCEnum component

(provided by OPC Foundation) runs in 32-bit process and only enumerates 32-bit OPC

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 90 of 91

servers. Consequently, native 64-bit OPC servers may be “invisible” for browsing from

32-bit OPC clients, although it is possible to connect to them, provided that the OPC

client has OPC server’s ProgID or CLSID.

Version Isolation

Product versions that differ in major version number or the first digit after decimal

point can be installed on the same computer in parallel. For example, version 5.12

can be installed together with version 5.02 or even version 3.03. Product versions

that differ only in second digit after decimal point are designed to be replaceable, i.e.

cannot be installed on the same computer simultaneously. For example, version 5.02

replaces version 5.01 or version 5.00, and version 5.12 replaces versions 5.10 and

5.11.

The simulation OPC server is not subject to the versioning rules described above for

the QuickOPC product. Just one instance of simulation OPC server can exist on a

computer. Features are being added to the simulation OPC server with newer

versions of QuickOPC. Always install the simulation OPC server from the latest

QuickOPC version in order to guarantee that all examples are functional.

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com
tel. +420 603 214 412, fax +420 378 600 795

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 91 of 91

Additional Resources

If you are migrating from earlier version, please read the “What’s New” document

(available from Start menu).

Study the Reference documentation (also available from Start menu).

Explore the examples and bonus tools and materials installed with the product.

You may have a look at “OPC Foundation Whitepapers” folder under the

documentation group in Start menu. We have included a selection of OPC Foundation

White Papers that you may find useful while getting accustomed with OPC in general,

or dealing with its specific aspects. Please pay particular attention to document titled

“Using OPC via DCOM with Windows XP Service Pack 2”, as it contains useful hints

that apply not only to Windows XP SP2 users.

Check the vendor’s Web page for updates, news, related products and other

information.

