CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic

° /s
= g OPC
e-mail: sales09@opclabs.com, Web: www.opclabs.com EOLU N DA T L Qi Labs
| M EmMBER |

tel. +420 603 214 412, fax +420 378 600 795

QuickOPC-Classic 5.12 Concepts

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 1 of 91

CODE Consulting and Development, s.r.o. oot ' - / OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &
e-mail: sales09@opclabs.com, Web: www.opclabs.com EOLU N DA T L Qi Labs

tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |
Contents
Yo T Lot T 7
T = | 5o ot 8
O PErATING SYSTOIMIS ittt ettt et ettt e e s e e bttt e e e e e e st b et e e eeesesanbbbaeaeeeeeasanbabaaaeeeseasnnraaaeeens 9
P O UISTEES i e e e s e s s s s s e e s e s s e s e e e s e e e s e s e e e e e e e e e e e e e e e e eaaaaaeaaaeaeaaaaaaaaeeaaaaaaaaaeaanaaaaaaaaeaes 10
o<1 1 [o= ST PP PPPPTPPPTTIN 11
202 N Te I oo ¥ or {3 PSPPI 11
oo T W ot T 12
F N Y=Y 0 o1 =SSR 12
XML COMIMNES eeaaeeeaaaeasasassaasssanaanaananns 13
160011/ I @loT0'a] o o] 0 1=T o1 £ PPN 13
Y Yo T=0=T 0 1T o oo LU 13
DLVl (oY oTa = o A X o = o L= TSR 14
(BT aTo XY o] o] [ToF: 1 o] WU 14
YT T0] A e T T O o Gy =Y oY ST 15
LICENSE IMIANAGET . .. eeiieieeee ettt e e e ettt e e e e e st et e e e e e s s sttt et e e e e e s s s sbbaaaeeeesssasnstsaaaeesesensnnsrbaaaeessannas 16
[BYeYol0[aa¥=T ol =Y uloT o= [a o I o T=Y o TSRS 16
T T T4 V=T 0 18
B Yoot | LU LY -SSR 18
Thick-client .NET applications 0N LANc.uuiiiiiiiie ettt et e e e ette e e e ebte e e e ebaaeeeeneeeeeeanes 18
Thick-client COM applications 0N LANccuuiii ittt ete e e e evre e e s sbae e e s sbaeeessreaeeesanes 19
Web applications (SEIVEF SIAE) ...cuuieecieeeciiieciee ettt ettt s e e st e e rre e et ae e sabe e s baeeateesabaeesanas 20
Referencing the ASSEMDIIESoouiiii et e e tee e e e abee e e e bee e e eenaeeas 21
Application Configuration File Changes (Rarely Needed).........ccceeceeevieeeiieeeciieeciee e 22
NQMIESPACES .. rress e e e e s e s e s e s e s e s s s s s s s s s e s s s s s s s s sesasssasasasasasasssasssssasssssssssssssasssssssssssssasasssssnsnsannnns 23
Referencing the COMPONENTS.ccuiiii e e et e e e e te e e et e e e e bae e e e abee e e esabeeeeennsenas 24
NAMING CONVENTIONS ..eiiiiiiiiiiiiiiiiee ettt e e e essiere e e e e s s s sstbbereeeeessssssabaeaeeessssssnssraeeeessssssssssseeeeesssnnns 25
(00T 0] oTo oL o] 3= Lo Lo I @] o] =T ot 43PPSR 26
(00T 0] o]U] e=Yu o] o =1 @] oY [=Tot £ PR 26
O [N =T = (ol @] o] =Tt & USSPt 28
Y = 0= T AV] o o Y- ol o USSRt 30
SIMUIANEOUS OPEIAtIONS ...eeiiiii i ittt ee et e e e e e e e e e e e s e e e e e e e eeesaabateeeeeaesessnsssaneeeaeseennnrenes 30
g gl o = oo |11V TP 31
Errors and Multiple-Element OPerationsceeeeiieeciiiiiieee e e e e e e crrae e e e e e e 32
[L= T o T ol 17 1= SRR 33
Dot [o] T VA @] o =Tt AF RSP USRNt 33
B L0 LT =T T Yo PP OTPPROTPPPPN 33

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 2 of 91

CODE Consulting and Development, s.r.o. i ' - / OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &
e-mail: sales09@opclabs.com, Web: www.opclabs.com EOLU N DA T L Qi Labs

tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |
(0] 2 LU =1 1 A PR 34
Value, Timestamp and QUAlTY (VTQ) .veeecreeeiiieiiieeiieeciee et eesteeesre e st eerae e snbeesaeeesnteesaseeeenes 35
T U 1L @] oY [Tt £ USRSt 35
Variant TYPE (VAITYPE) cuveeeceiieeciieeciie e ciee ettt e sttt e e teeette e s ate e e taeestteeebeeessteesataeensaeesnseeenseeesssessnseeennees 35
[=T g LT ol 0] o =T or £ PR UPPSRN 36
D TT ol g0} o] ol @] o =Yot {3 UU SRRt 37
T 10 gLl =T O] o 1=T ol APPSR PPN 37
OPC Data ACCESS TASKS «...iiieeeiiiiieuiiiiieniiiiineiiiiieneiiiieneiiiiessisiiesssssimssssssssesssssssessssssssnssssssansssssssnssss 38
(0] o) =T [a 1T o= 1) oY a1 F- 4 o] TR 38
REAAING FromM OPC IEMIS ... eiiiie ittt e e et e e e s e e e s sbae e e e sabtaeeesseeeesssteeeesnes 38
Getting OPC Property ValUESoiciiieieiiie ettt e e e e st e e e tee e s s sta e e e s saaeessnbaeesennreeas 39
VT Yo [y aViTa =3 T} foY4 g ¥ 14 o TP USSR 40
WIITING 0 OPC ITEIMS eeeiiiiiiiiiieeee ettt ettt e e e e s sttt e e e e s s sttt e e e e e e s e s anbtaaaeeesssassnreaeaeeas 40
Browsing for INfOrmMationeii i e ae e e 40
BroWSING fOr OPC SEIVETSveiiiciieee ettt e eeiteeeeette e e eetteeeeebaeeeeebaeeeesseaeessseaeeeestaeesaseseessastesaesanes 41
Browsing for OPC Nodes (Branches and LEAVES)c.eieceeeiieeeiiieesieeecieeesteeeteeesreesveeevaeesvne s 41
Browsing for OPC ACCESS Paths.....cciiiiiiii ittt e e e st e e s ebae e e s sbreeeesanes 42
Browsing for OPC PrOPEITIESvvviiieiiiee et e eetie ettt e e ettt e e e ette e e e e tae e e s ebaeeesentaeesenseneeeesteneesanes 42
SUbSCribiNg fOr INfOrMaAtioN.....ccccuiiie e e s e e e e b e e e esrreeeeas 43
SUDSCIIDING 10 OPC ILEMS ..eiiiiiiiiiecciiee ettt ettt e et e e et e e e s b e e e e s sbeeeesssteeeessbeeeessnseeessnnseeas 43
Changing EXisting SUDSCIIPTION ...ccc.uiiiie et e e et e e e e abe e e e e abee e e enreeas 44
UNnsubscribing from OPC EEMSueiiiiiiiee ettt ete e e et e e s sbte e e s sbte e e s sbaeeeesnbaeeeesanes 45
£E€M ChaNEEA EVENT.....oiiiiiiee ettt e et e e e et e e e e ette e e e ebteeeeebteeesenstaeeesstaeeeestenaesnes 45
Using Callback Methods Instead of Event Handlersccueeeeeciieeieciiie ettt 46
N 1Y e T T =L (] TP PP UPPPPRPIN 47
(0] T ol (o]0 010 o Yo T D1 F=1 o =< 49
COMPUEET BrOWSET DIGlOZ. ... uviiieeiiie ettt e et e e e ate e e e e nbae e e enbaeeeenbaeeeennrenas 49
(0] O T VTl D1 -1 [-SSP 50
(0] 2108 0 YN =Yool D11 Lo = USSR 50
OPC-DA Property DIGlOg «...cccccuuiieeeciiee ettt ettt ettt e et e et e e e e ate e e e e ate e e eennteeeeentaeesenntaeeeennsenas 51
(0] O U YT 0] o] =T 3P PRTPRR 52
ComPpPULEr BrOWSEI DIAlOg.......uuiiiiieiiieciiiieeee ettt e e e e e e e e et e e e e e e s e anbraeeeeeseeeeannreaneeens 52
OPC Server BroWSE DIialOguuuiiiiiiiieciiiieeee ettt e e e e e et ee e e e e e e et e ae e e e e e e e eannreanaeens 53
OPC-DA I£EM BrowSe DIAlOZceiicuiiieiiiiiieeciiiee e ecitee e et e e et e e e sate e e e saae e e s snbeesesabaeesentaeesennsenas 54
(@] Lo YN =T g YT (=Y ot 1 =1 [S 55
OPC Alarms and EVENts TasKsScccceiiiruuiiiiimmniiiiieniiiiimniiiiimmiiiiessiiiissiiiessssiesssssissssssmsssssssssnssss 57
(0] o) =Y [a 1T aT=d 10} {eT 4 a2 F- 4 o TR SN 57
Getting CoNdition STAt ..o e e e e e e e e nnrraeaeaas 57
MoOdifying INFOrMATIONoeiiiieee e et e e et e e e e e e e e e bae e e e ebee e e e e abaeeeenaseeas 57

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 3 of 91

CODE Consulting and Development, s.r.o. i ' - / OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &
e-mail: sales09@opclabs.com, Web: www.opclabs.com EOLU N DA T L Qi Labs

tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |
Acknowledging @ CONAITION ...cc.uuiii i e e e s ebee e s e sabee e e enareeas 58
Browsing for INfOrMatioNneeii i e s bre e e 58
BroWSING fOr OPC SEIVEISveiiieiieeeeeiiieeeettee e eette e e eette e e e etteeeeetteeeesbaeeessssaeeesstaeeseseneessnstesessnnes 58
Browsing for OPC Nodes (Areas and SOUICES)uueccueeeriieiiieeeiieeescieeerteeesteessseeessseessesssssessssesenns 58
Querying for OPC EVENt Cat@BOMIES ..uuiiiiurieiieiiiieeeiiteeeesiieeessitte e e st e e e sibe e e s ssree e e sabeeessnbeeessnreeas 59
Y] oIy el g1 o1 TaY =4 (o gl 1o (o] o 4o T 14 o] o VN 60
SUDSCHIDING t0 OPC EVENES coiiiiiieiieiiiee ettt ettt e s ettt e e s stte e e st ee e e s sateeessnsreeeesnsbaeessnnbeeesennsenas 60
Changing EXisting SUDSCIIPLION ..ciiiuiiiiiiiiie et e e s e e s 61
Unsubscribing from OPC EVENTSccicuiiieiciiieecciieee ettt ettt e e ette e e e evae e e e e tae e e s enteeesebaneesensaeeeesanes 61
Refreshing Condition States......ccuiiiiiciiie i e e s ebee e e s sbee e e s ssteeeesanes 61
N Loy Tor= Y 4T o TN oAV 7=Y o} PSPPSRt 62
Using Callback Methods Instead of Event Handlersccueeeeeiieeicciiie ettt 63
SN ParamMBTEIS ittt et e sttt e e e s e sttt e e e e e e e et bta e e e e e e e e abrbaaeeeeeeneaaranee 64
EQSYOPC.NET EXTENSIONScevuuuiiiiiniiiiiiiiiiiiiiiiinieieiinieeiisiienesisitenssisnenassisnessssisnesessssmensssssrensssssssnenes 66
U S0 it s s s e e s e s e s e s e s e e e s e s e aaaeaeaeaaaaaaaaeaaaeaeeaaeeaaaeeaaaaaaaeaeaeaaaaaaaaaaaes 66
Data ACCESS EXTENSIONS oeiiiiiiiiiiieee ittt e s e ettt e e e e s s s st bttt e e e e e s saababeteeeeesssasnstbaaaeeessssanssseaaeesssnnas 66
(0] O o o o 1= A =TT TSP PPPU PP 66
T PE-SATE ACCESS ..vriee it e ettt ettt e et e e e et e e e e e tr e e e e beeeeeebeeeeeeabeeeeenasaeeeeanseeeeeanbeeeeennsenas 66
WEll-KNOWN PrOPEITIES ...uvviiiiciiiie ettt ettt ettt e et e e st e e e s ata e e e e sssbeeeesnseeeeennsseaeens 67
Alternate ACCESS MENOMSccccuiieiiciiie e s e e e s b e e e s abee e e esaseeas 67
(0] O 1 (=T 1 E ST PP P PP PTPT ORI 67
T PE-SATE ACCESS ..tviiiieiiiie ittt ettt ettt et e e et e e e et e e e e e bee e e s e be e e e esabeeeeesabeeeeesabteeeeeabeeeeennreeas 67
Software Toolbox Extender REPIacemMENT........cc.uuiiii it e e e e eabae e e s eaareeeeas 68
Application DeplOYMENtc.ciiiiieeiiiiiiiiiiiireniiiiiiiiiesesmeisiiiiresssmssitiimessssssstimesssssssssssssssssnes 69
[DL=T o] Lo}V a =T o Al =T g 1T o PP 69
N1 0]] =SS 69
Development Libraries and COM COMPONENTScccccviiieieiiieeeeeiieeeeeciteeeeectteeeeecsteeeeeseeeeeessresaesnes 69
Y Yo =0T o 1T o o Yo | L3PPSR 70
=T = To U1 LTS 70
[0 =T o] 1 = SRS 72
[DL=T o] Fo}Y7 o =T o) Al Y/ 1=1 4 o Vo T USSR 72
Yo Ul B LT o] 1o 1Y 2 0 1=y o) SRR 72
JANT o] g T 1Yo D T=T o] (o171 41T o | bR PSPROY 73
AdVaNCE TOPICS coiviirerenuniiiiiiiiiiirenuiisiiitiirerssisisistiiresasmssssistimmesssssssssisssrmrsssssssssssssssessssssssssssssssssnnes 74
(0] o O o =T ol 1 or= o LSRR 74
OPC-UA (UNIVersal ArChITECTUIE) ...ccicueieeeeeiie ettt ettt ee et e e e tae e e et ae e e e ta e e e esabaeeeeensaeeeennnreeaaan 74
(0] O [=T oY== o1 111 4V PN 76
A=Y o) 0 = =1 o = R 77
EQSYOPC OPLtioNs Utility..eeee ittt e e e et e e e e e e e e b e e e e e e e e esnnnreeeeeeeeeenns 77

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 4 of 91

CODE Consulting and Development, s.r.o. X] ® / OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic s Vg2 4
e-mail: sales09@opclabs.com, Web: www.opclabs.com FOUNDATION ﬁ Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

COM Registration and SEIVEI TYPES....uuiiiiiciiieiiciite e sttt e sstteeessatreeessbaeeessabaeeessssaeeessssseessssseeessssseeeans 77
F XY aTel a1 ge] aTe U @] o 1=T = 1 o] L3RR 78
Multiple Notifications in ONE Callcueiiiiiiiiie e e rbre e e e bae e e e eareeas 80
Tal =T o 1O o d1a TF4= Y d o] o LU 81
o 11 U I =T ol o1 =T o ST PUPR 82
TIMEOUL HANAIING ..t e e e e e et e e e s e abe e e e eabaee e eeabaeeeesaseeeeennbaeeeanreeas 83
DAt Ty P e aaaaaaaaaaaaaaaaeans 85
Multithreading and SYyNChronizatioN..........coociiiii i 87
LY ol 1 {0 o 4 [OOSR 89
32-bit aNd 64-bit COUE ...uviiiiiiiiie et e e e e e e e e e e s raeeeean 89

(0] 0o o I oY B o T A} Ay (=Y o USRI 89

RV L= o o FY o] F= 14 o Yo USSR 90
AdditioNal RESOUICES ..ccuuuuiiiiiiiiiieuiiiiiiiiiiirrieisistirresasasssisssrrrsasssssssisssrersnsssssssssssnersnssssssssssssessnnnes 91

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 5 of 91

Microsoft

Net

CODE Consulting and Development, s.r.o. ool ' - (OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N ﬁ Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

a'Y

COM

Introduction

Are you having difficulties incorporating the OPC data into your solution? Need to do
it quickly and in quality? If so, QuickOPC comes to the rescue.

QuickOPC is a radically new approach to access OPC data. Traditionally, OPC
programming required complicated code, no matter whether you use OPC custom or
automation interfaces. OPC Server objects must be instantiated, OPC Group objects
must be created and manipulated, OPC Items must be added and managed properly,
and subscriptions must be established and maintained. Too many lines of error-prone
code must be written to achieve a simple goal — reading or writing a value, or
subscribing to value changes.

QuickOPC is a set of components that simplify the task of integrating OPC into
applications. Reading a value from OPC Data Access server, or writing a data value
can be achieved in just one or two lines of code! Receiving alarms from OPC Alarms
and Events server is also easy.

The components can be used from various languages and environments.

QuickOPC-Classic is a product line that consists of two products: QuickOPC.NET and
QuickOPC-COM. The text is document applies mostly to both products. When
necessary, the differing text is marked with corresponding COM or .NET icon.

In QuickOPC.NET, the available examples show how the components can be used
from C#, Visual Basic.NET, and managed C++. Windows Forms, ASP.NET pages,
console applications, and WPF applications are all supported.

The development tools we have targeted primarily are Microsoft Visual Studio 2008
and Microsoft Visual Studio 2010.

In QuickOPC-COM, the available examples show how the components can be used
from Visual Basic (VB), C++, VBScript (e.g. in ASP, or Windows Script Host), JScript,
PHP, Visual Basic for Applications (VBA, e.g. in Excel), Visual FoxPro (VFP), and other
tools. Any tool or language that supports COM Automation is supported.

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 7 of 91

CODE Consulting and Development, s.r.o. ' - (OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N a Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

Installation

The installation can be started by running the setup program. Just follow the on-
screen instructions. The installation program requires that you have administrative
privileges to the system.

After an introductory screen, the setup wizard offers you the basic installation
options:

i5) Setup - OPC Labs QuickOPC-Classic 5.11 =[] 2 |

Installation Dashboard

Express installs offer predefined set of components and settings. Custom install
allows you to choose the components installed, and other setup settings.

Select one of the install options below, then didk Mext,

(@ Express install for .NET development
() Express install for COM development
() Custom install

< Back ” Mext =]I Cancel

For start, simply choose one of the “express” install options. If you decide to select
“custom install”, the installation program then offers you several installation types,
and also allows you to choose specifically which part of the product to install. In
addition, with the “custom install”, you can also influence additional settings such as
the destination location, and whether to automatically Launch the License Manager
utility.

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 8 of 91

CODE Consulting and Development, s.r.o. ® /7 OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N n Labs
tel. +420 603 214 412, fax +420 378 600 795

15! Setup - OPC Labs QuickOPC-Classic 511- [

Select Components
Which components should be installed?

Select the components you want to install; dear the components you do not want to
install. Click Mext when you are ready to continue,

[T}"piE| installation (.MET) v]
Target Platforms (.MET) -

%86 1
L xsa "': |

Assemblies 3.1MB
.. [7] ¥ML comments (InteliSense)

[] coM Components 13.0 MB

[] Management Tools (COM) 5.5ME

[| Development Libraries (COM) 6.8 MB

[l Demo Aoplications 40MB T

Current selection requires at least 48.8 MB of disk space.

[< Back][Mext =][Cancel

When the installation is finished, it opens the Quick Start document. You can access
the documentation and various tools from your Start menu.

The product includes an uninstall utility and registers itself as an installed application.
It can therefore be removed easily from Control Panel. Alternatively, you can also use
the Uninstall icon located in the product’s group in the Start menu.

Operating Systems

The product is supported on following operating systems:

e Microsoft Windows XP with Service Pack 2 or later (x86)
e Microsoft Windows Vista with Service Pack 1 or later (x86 or x64)
e Microsoft Windows 7 (x86 or x64)

e Microsoft Windows Server 2003 with Service Pack 1 or later (x86 or x64)
e Microsoft Windows Server 2008 (x86 or x64)

e Microsoft Windows Server 2008 R2 (x64), optionally with Service Pack 1

Microsoft

.n_e-t On x64 platforms, QuickOPC.NET can run in 32-bit or 64-bit mode.

o % QuickOPC.COM currently runs always in 32-bit mode, even on x64 platforms.
CoOM

O

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 9 of 91

CODE Consulting and Development, s.r.o. ool ' - (OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N ﬁ Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

Prerequisites

Microsoft For QuickOPC.NET, the following software must be present on the target system

.nEt before the installation:

1. Microsoft .NET Framework 3.5 with Service Pack 1 (Full or Client Profile), or
Microsoft .NET Framework 4 (Full or Client Profile).
Needed when: Always (the choice depends on the framework that you
target).

The Client Profile of the .NET Framework is enough for QuickOPC.NET itself;
however in some scenarios you will need the Full profile, such as when you
are developing ASP.NET applications, or want to run the ASP.NET examples
included with the product.

2. Adobe (Acrobat) Reader, or compatible PDF viewer.

The QuickOPC.NET setup program also installs following software on the target
system, when needed for the selected set of installation components:

1. Microsoft Visual C++ 2008 Service Pack 1 Redistributable Package ATL
Security Update (x86).

2. Microsoft Visual C++ 2008 Service Pack 1 Redistributable Package ATL
Security Update (x64).

3. Microsoft Visual C++ 2010 Redistributable Package (x86).
4. Microsoft Visual C++ 2010 Redistributable Package (x64).
5. OPC Core Components 3.00 Redistributable (x86).
6. OPC Core Components 3.00 Redistributable (x64).
) For QuickOPC-COM, the following software must be present on the target system

CcoM before the installation:

a's

1. Microsoft .NET Framework 3.5 with Service Pack 1.

QuickOPC-COM does not directly require the Microsoft .NET Framework 3.5,
but OPC Core Components setup may fail without it.

Microsoft .NET Framework 3.5 is also needed for OPC UA COM Interop
Components. QuickOPC-COM does not use it directly. This is only needed if
you want to connect to OPC-UA (Universal Architecture) servers, and you
check “OPC UA COM Interop Components” in the selection of components to
be installed.

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 10 of 91

CODE Consulting and Development, s.r.o. e ' - (OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N ﬁ Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

2. Adobe (Acrobat) Reader, or compatible PDF viewer.

The QuickOPC-COM setup program also installs following software on the target
system:

1. Microsoft Visual C++ 2010 Redistributable Package (x86)
2. OPC Core Components 3.00 Redistributable (x86)

Licensing

QuickOPC is a licensed product. You must obtain a license to use it in development or
production environment. For evaluation purposes, you are granted a trial license,
which is in effect if no other license is available. The QuickOPC.NET and QuickOPC-
COM parts are licensed separately.

With the trial license, the components only provide valid OPC data for 30 minutes
since the application was started. After this period elapses, performing OPC
operations will return an error. Restarting the application gives you additional 30
minutes, and so on. If you need to evaluate the product but the default trial license is
not sufficient for you purposes, please contact the vendor or producer, describe your
needs, and a special trial license may be provided to you.

The licenses are installed and managed using a License Manager utility, described

further in this document.

Related Products

Additional products exist to complement the base QuickOPC.NET offering. Check the
options available with your vendor.

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 11 of 91

Microsoft

Net

CODE Consulting and Development, s.r.o.

Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com

tel. +420 603 214 412, fax +420 378 600 795

FOUNDATION

° (g

0PC
ﬁ Labs

Product Parts

Assemblies

At the core of QuickOPC.NET there are .NET assemblies that contain reusable library
code. You reference these assemblies from the code of your application, and by

instantiating objects from those assemblies and calling methods on them, you gain

the OPC functionality.

The assembly files are installed into a subdirectory called Assemblies under the

installation directory of the product. For easy recognition among other assemblies

when used in a larger context, all assemblies start with “OpcLabs.” prefix.

Following assemblies are part of QuickOPC.NET:

Opclabs.BaselLib

Opclabs.EasyOpcClassic-
Internal

OpcLabs.EasyOpcClassic

OpclLabs.EasyOpcClassic-
Forms

OpclLabs.EasyOpcClassic-
Extensions

Opclabs.BaselLib.dll

Opclabs.EasyOpcClassic-
Internal.dll
Opclabs.EasyOpcClassic.
dil

Opclabs.EasyOpcClassic-
Forms.dll

Opclabs.EasyOpcClassic-
Extensions.dll

OPC Labs Base
Library
EasyOPC.NET
Internal Library
EasyOPC.NET
Library

EasyOPC.NET
Forms

EasyOPC.NET
Extensions

Supporting code
Supporting code

Contains classes that
facilitate easy work with
various OPC specifications,
such as OPC Data Access and
OPC Alarms and Events.
Contains classes that
facilitate easy work with OPC
Data Access and OPC Alarms
and Events from Windows
Forms applications.

Extends functionality of
Opclabs.EasyOpcClassic

QuickOPC.NET components were consciously written to target Microsoft .NET

Framework 3.5, i.e. they do not depend on features available only in the later version

of the framework. As such, you can use the components in applications targeting

version 3.5 or 4.0 of the Microsoft .NET Framework.

For the curious, QuickOPC.NET has been developed in Microsoft Visual Studio 2010
(with the use of Visual Studio 2008 platform toolset for .NET Framework 3.5 target).
The layers that directly use COM (such as the OpcLabs.EasyOpcClassic assembly) are

written in managed C++. More precisely, they contain mixed mode assemblies, where

the bulk of the code is in MSIL instructions, with a few exceptions where necessary.

All other parts are written in pure C#.

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 12 of 91

CODE Consulting and Development, s.r.o. ool ' - (OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N ﬁ Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

a's

CoM

PP

Com

XML Comments

Together with the .DLL files of the assemblies, there are also .XML files that contain
XML comments for them. The texts contained in these files are used by various tools
to provide features such as IntelliSense and Object Browser information in Visual
Studio.

COM Components

At the core of QuickOPC-COM there are COM components that contain reusable
library code. You reference these components from the code of your application, and
by instantiating objects from those components and calling methods on them, you
gain the OPC functionality.

The component files are installed into a subdirectory called Bin under the installation
directory of the product. Following components are part of QuickOPC-COM:

EasyOPC easyopci.dll EasyOPC Contains classes that facilitate
easyopcl.exe Component easy work with OPC Data Access
and OPC Alarms and Events.
OPCUserObjects = OPCUserObjects.exe | OPC User Contains classes that make it
Objects easy to include OPC-related user

interface in your application.

QuickOPC-COM components were consciously written so that a broad range of COM
automation clients can use them, without limitation to programming language or
tools used.

For the curious, QuickOPC-COM has been developed in Microsoft Visual Studio 2010,
and is written in C++.

Management Tools

Management tools allow you to configure and monitor the QuickOPC-COM
components. The setup program installs following management tools:

EasyOPC Options Application: Use this utility to configure the desired behavior of
EasyOPC component. EasyOPC component comes with predefined settings that are
suitable for most applications. For large-volume operations, or specialized needs, it
may be necessary to fine-tune the settings.

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 13 of 91

com

PP

Microsoft)

Net

CODE Consulting and Development, s.r.o. ool ' - (OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N ﬁ Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

Event Log Options Application: Use this utility to configure how errors and events
will be generated and logged.

Development Libraries

In Microsoft COM, the components are described by their corresponding Type
Libraries. Type libraries are binary files (.tlb, .dll or .exe files) that include information
about types and objects exposed by an ActiveX (COM) application. A type library can
contain any of the following:

e Information about data types, such as aliases, enumerations, structures, or
unions.

e Descriptions of one or more objects, such as a module, interface, IDispatch
interface (dispinterface), or component object class (coclass). Each of these
descriptions is commonly referred to as a typeinfo.

e References to type descriptions from other type libraries.

By including the type library with QuickOPC-COM, the information about the objects
in the library is made available to the users of the applications and programming
tools.

QuickOPC-COM comes with following type libraries:

e OPC Labs EasyOPC Type Library (Version 5.1, in file easyopct.dll): For
EasyOPC Component.

e OPC Labs OPC User Objects Type Library (Version 5.1, in file
OPCUserObjects.exe): For OPC User Objects.

Demo Application

QuickOPC.NET installs with a demo application that allows exploring various functions
of the product. The demo application is available from the Start menu.

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 14 of 91

CODE Consulting and Development, s.r.o. e ® re OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic ma Ve 4

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N Labs
tel. +420 603 214 412, fax +420 378 600 795 | _KEnmIE |

| ol EasyOPC.NET 5.1 Demo Applicatio

Hint: Press the "Subscribe item” button to see dynamically changing OPC data.

Serverclass: OPClabs KitServer.2 < Browse servers...

Property ID: 1 [<Bmwsepmperties...] [Get property value] Property value:

Value to write: 1 Write item value
Update rate {ms): Subscribe item Valus: -7.59059906005859
Percent deadband: H-MEI Change subscription Timestamp: 5/30/2011 8:42:21 AM
Qualty: Good GoodNonspecific LimitOk (192)

) QuickOPC-COM installs with a demo application that allows exploring basic functions
gCOM of the product. The demo application is available from the Start menu.
EasyQPC-DA (COM) Demo Applicati | & |

Machine name:

Server dass: QpCLabs.KitServer.2

Item IDY Demo.Ramp

Value: 7,54191398620605

Timestamp: 3¢12/2010 9:44:09 AM

Quality: 192

Exception:

Simulation OPC Server

To demonstrate capabilities of QuickOPC, some OPC server is needed. The demo
application installed with the product, and most examples use an OPC Simulation

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 15 of 91

CODE Consulting and Development, s.r.o. e ' - (OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N a Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

Server that is installed together with QuickOPC. The server’s ProglD is
“OPCLabs.KitServer.2"”.

The demo application and the examples are designed to connect to the Simulation
OPC Server in its default configuration (i.e. as shipped). In fact, some very simple
examples connect to just one OPC item, named "Demo.Ramp". There are various
other OPC items in this server that you can use in your own experiments too.

Microsoft

Net

Note: On 64-bit platforms, the installation program still registers the 32-bit (x86)
binary of Simulation OPC Server. This configuration gives better OPC compatibility.
The 64-bit binary of Simulation OPC Server is also installed to the disk, and can be
registered manually if needed.

License Manager

The License Manager is a utility that allows you to install, view and uninstall licenses.

In order to install a license, invoke the License Manager application (from the Start
menu), and press the Install license button. Then, point the standard Open File dialog
to the license file (with .BIN) extension provided to you by your vendor.

=] License Manager [mes

Component: |EasyOPCHET 5.1 A4

Available licenses:

Senal number Status Drescription Location lzsued to
Inztall license... Uninstall license Show details...

Note: You need administrative privileges to successfully install and uninstall licenses.

Documentation and Help

The documentation consists of following parts:

- Concepts (this document).

- Quick Start. Short step-by-step instructions to create your first project.

- Reference. The reference documentation is in .CHM format (Microsoft
HTML Help), and formatted according to Visual Studio style and
standards.

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 16 of 91

=
(= COM

Microsoft)

Net

CODE Consulting and Development, s.r.o. e ' - (OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N a Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

- What’s New. Contains information about changes made in this and
earlier versions.

- Bonus Material document.

- Examples document.

- EasyOPC Options Help. Describes the EasyOPC Options Application.
You can access all the above mentioned documentation from the Start menu.

In addition, there is IntelliSense and Object Browser information available from Visual
Studio environment.

The QuickOPC.NET help content integrates with Microsoft Visual Studio 2008 Help
(Microsoft Help 2 format) and Microsoft Visual Studio 2010 Help (Microsoft Help
Viewer 1.0 format).

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 17 of 91

Microsoft)

Net

O
O_COM

Microsoft

Net

CODE Consulting and Development, s.r.o. ' - (OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N a Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

Fundamentals

This chapter describes the fundamental concepts used within QuickOPC component.
Please read it through, as the knowledge of Fundamentals is assumed in later parts of
this document.

Typical Usage

QuickOPC.NET is suitable for use from within any tool or language based on Microsoft
.NET framework. There are many different scenarios for it, but some are more
common.

QuickOPC-COM is suitable for use from within any tool or language based on
Microsoft (COM) Automation. There are many different scenarios for it, but some are
more common.

Thick-client .NET applications on LAN

The most typical use of QuickOPC.NET involves a thick-client user application written
in one of the Microsoft .NET languages. This application uses the types from
QuickOPC.NET object model, and accesses data within OPC servers that are located
on remote computers on the same LAN (Local Area Network). The communication
with the target OPC server is performed by Microsoft COM/DCOM technology.

The following picture shows how the individual pieces work together:

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 18 of 91

CODE Consulting and Development, s.r.o. =PRI (o OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic z

S0
e-mail: sales09@opclabs.com, Web: www.opclabs.com W n Labs

tel. +420 603 214 412, fax +420 378 600 795

P

com

T

Your
application with
QuickOPC.
NET

et

ocal Area Network (LAN)

Thick-client COM applications on LAN

The most typical use of QuickOPC-COM involves a thick-client user application written
in a tool or language that supports COM automation. This application uses the types
from QuickOPC-COM object model, and accesses data within OPC servers that are
located on remote computers on the same LAN (Local Area Network). The
communication with the target OPC server is performed by Microsoft COM/DCOM
technology.

The following picture shows how the individual pieces work together:

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 19 of 91

CODE Consulting and Development, s.r.o. ® /7 OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N n Labs
tel. +420 603 214 412, fax +420 378 600 795

T

Your
\ application with
% QuickOPC-

COoM

Q

N

Client
_..-[DCOM

(Local Area Network (LAN) U

|l

Server

Web applications (server side)

The other typical use of QuickOPC is to place it on the Web server inside a Web
application. The Web application provides HTML pages to the client’s browser, runs in
a Web server, such as Microsoft IIS (Internet Information Server), and is written using
tools and languages such as

e ASP/VBScript, PHP, Python and others — any language that supports COM
automation, or
e ASP.NET, C#, Visual Basic.NET, or any other .NET language.

The Web application uses the types from QuickOPC object model, and accesses data
within OPC servers that are located on remote computers on the same LAN (Local
Area Network). The communication with the target OPC server is performed by
Microsoft COM/DCOM technology. No OPC-related (or indeed, COM or Microsoft-
related) software needs be installed on the client machine; a plain Web browser such
as Internet Explorer (IE) or FireFox is sufficient.

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 20 of 91

Microsoft

Net

CODE Consulting and Development, s.r.o. Yo - / OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N a Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

The following picture shows how the individual pieces work together:

Client

'our
application
with
QuickOPC-
COM

Referencing the Assemblies

Your application first needs to reference the QuickOPC.NET assemblies in order to
use the functionality contained in them. How this is done depends on the language
and tool you are using:

e For Visual Basic in Visual Studio, select the project in Solution Explorer,
and choose Project -> Add Reference command.

e For Visual C# in Visual Studio, select the project in Solution Explorer, and
choose Project -> Add Reference command.

e For Visual C++ in Visual Studio, select the project in Solution Explorer, and
choose Project -> References command.

You are then typically presented with an “Add Reference” dialog. The QuickOPC.NET
assemblies should be listed under its .NET tab. Select those that you need (see their
descriptions in “Product Parts” chapter), and press OK.

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 21 of 91

CODE Consulting and Development, s.r.o. e ' - (OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N ﬁ Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

&0 Add Reference (7 =]
MNET |COM | Projects | Brovese | Recent|
Filtered to! MET Frarnewark 3.5 Client Profile

Cormponent Mame = Wersion Runtirme Path 0
dao 10.0.4504,0 +1.0.3705 DhProgram Files\Microsoft Wisual Stud
EasyQPC.MET Extensions 5.12.443.1 w2.0.50727 ChDevRoothOPCLabs-Quick QP CYQuic
EasyQPC.MET Forms 5.12.443.1 w2 0.50727 CiaDevRootOPClabs-QuickQPCyQuic
EasyQPC.MET Internal Library 5.12,443.1 w2.0.50727 ChDevRoothOPCLabs-QuickOPChQuic
EasyQPC.MET Library 5.12.443.1 w2 050727 CvDevRoothOPCLabs- QuickOPCY Quic
Enterprise Library Configuration Applica., 4.0.0.0 w2.0.50727 DihPrograrm Files\Microsoft Enterprize |
envdte 8.0.0.0 w1.0.3705 DvProgram Files\Cormon Files\Micro
ErnDITE 8.0.0,0 v1.0.3705 DhProgram Files\Microsoft Wisual Stud
erwdte100 10.0.0.0 w2.0.50727 DhProgram Files\Comrnon Files\Micra
envdted0 8.0.0.0 w1.0.3705 DivProgram Files\Cormmon Files\Micro +
a4 m [3

| ok [Cconcel

Most projects will need “EasyOPC.NET Library”; some will also need “EasyOPC.NET
Forms” or “EasyOPC.NET Extensions” component.

If you are using the Visual Studio Toolbox (described further below) to add instances
of components to your project, the assembly references are created for you by Visual
Studio when you drag the component onto the designer’s surface.

Application Configuration File Changes (Rarely Needed)

If you are targeting .NET Framework 4, in certain rare situations, you need to
configure your application to properly load the core mixed-mode assembly of
QuickOPC. In order to do so, add useLegacyV2RuntimeActivationPolicy="true" to
‘startup’ element in your application configuration file.

This setting influences how the CLR activated the mixed mode assemblies targeting
.NET Framework 3.5 (CLR 2.0) that are part of EasyOPC.NET. The components include
a loader code that attempt to configure this setting for you, so that .NET Framework
4 applications can use the EasyOPC.NET assemblies seamlessly. If, however, your
application happens activate other CLR 2.0 assemblies using a .NET Framework 4
application policy before the EasyOPC.NET loader gets a chance to configure the
setting, you will get a following exception (as an inner exception of type loading
attempt failure): “Mixed mode assembly is built against version 'v2.0.50727' of the
runtime and cannot be loaded in the 4.0 runtime without additional configuration
information.”

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 22 of 91

CODE Consulting and Development, s.r.o. e ' - (OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N ﬁ Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

In such case, an additional setting is needed in the application configuration file. In
Visual Studio, you typically design the contents of the application configuration file is
in the app.config file in your project. If you do not have this file in your project, add it
first. After making this change, the file may look like this:

<?xml version="1.0"?>

<configuration>

<startup uselLegacyV2RuntimeActivationPolicy="true">
<supportedRuntime version="v4.0"/>

</startup>

</configuration>

Namespaces

The QuickOPC.NET class library is made up of namespaces. Each namespace contains
types that you can use in your program: classes, structures, enumerations, delegates,
and interfaces.

All our namespaces begin with OpcLabs name. QuickOPC.NET defines types in
following namespaces:

OpclLabs.EasyOpc Opclabs.EasyOpcClassic Contains classes that facilitate
Opclabs.EasyOpcClassic- easy work with various OPC
Extensions specifications (i.e. common

functionality that is not tied to a
single specification such as OPC
Data Access or OPC Alarms and

Events).
Opclabs.EasyOpc.AlarmsAndEvents = Opclabs.EasyOpcClassic Contains classes that facilitate
Opclabs.EasyOpcClassic- easy work with OPC Alarms and
Extensions Events.
Opclabs.EasyOpc.DataAccess Opclabs.EasyOpcClassic Contains classes that facilitate
Opclabs.EasyOpcClassic- easy work with OPC Data
Extensions Access.
Opclabs.EasyOpc.DataAccess.Forms | Opclabs.EasyOpcForms Contains classes that facilitate

easy work with OPC Data Access
from Windows Forms
applications.

You can use symbols contained in the namespaces by using their fully qualified name,
such as Opclabs.EasyOpc.DataAccess.EasyDAClient. In order to save typing and
achieve more readable code, you will typically instruct your compiler to make the
namespaces you use often available without explicit reference. To do so:

e |n Visual Basic, place the corresponding Imports statements at the
beginning of your code files.

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 23 of 91

CODE Consulting and Development, s.r.o. Y ot ' - , OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N a Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

a4

com

e In Visual C#, place the corresponding using directives at the beginning of
your code files.

e In Visual C++, place the corresponding using namespace directives at the
beginning of your code files.

Referencing the Components

Your application first needs to reference the QuickOPC-COM components in order to
use the functionality contained in them. How this is done depends on the language
and tool you are using.

In Visual Basic 6.0 and Visual Basic for Applications (e.g. Microsoft Excel, Word,
Access, PowerPoint, and many non-Microsoft tools), select Project -> References (or
Tools -> References) from the menu. You are then presented with a “References”
dialog. The QuickOPC-COM type libraries should be listed in alphabetical order,
prefixed with “OPC Labs” in their name so that you can easily find them grouped
together:

References - Project1

Available References: (o] 4

CLE DE Errors Type Library Y Cancel

oleprn 1.0 Tvpe Librar
MICPC Labs EasyOPC Tyoe Library

OPC Labs kit Server 2.1 Type Library Browse. ..

|

OPC Labs OPC User Objects Type Library

CpcEnum 1.1 Type Library ﬂ

CpksHold 1.0 Type Library

Package and Deplaoyment Wizard Pricrity
Performance Logs and Alerts 1.0 Type Library Help
PPServer 1.0 Twpe Library ﬂ

Preview 1.0 Twpe Library
prockexe 1.0 Type Library
RacReg
RA&N 97 - Wirard Tnkerfares
< >

QPC Labs EasyOPC Type Library

Location: C:\Program Files\OPC LabshQuickOPC-COM 5, 118ineasyopct .
Language: Standard

Check the boxes next to the libraries you are referencing, and press OK.

Some tools provide a different user interface for referencing the components, while
yet others do not have any user interface at all, and you need to write a source code

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 24 of 91

CODE Consulting and Development, s.r.o. ool ' - (OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N ﬁ Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

statement that references the type library directly. Following table contains all pieces
of information that you may need to properly reference and use the components:

OPC Labs EasyOPC 5.1 FAB7A1E3-3B79- easyopct.dll | EasyOpclib Contains classes
Type Library 4292-9C3A- that facilitate
DF39A6F65EC1 easy work with
OPC Data
Access and OPC
Alarms and
Events.
OPC Labs OPC User 5.1 965A3842-AEEA- OPCUser- OPCUserObjects | Contains classes
Objects Type Library 4DF9-9241- Objects.exe that provide
28B963F76E24 user interface

for OPC Data
Access tasks.

For your convenience, we have listed below examples of source code reference
statements in various languages and tools.

C++ #import "libid:FAB7A1E3-3B79-4292-9C3A-DF39A6F65ECL"
version(5.1) // EasyOpcLib

WSH <reference guid="{FABT7AlE3-3B79-4292-9C3A-DF39A6F65EC1}"
version="5.1" /> <!--0PC Labs EasyOPC Type Library-->

ASP <!—METADATA TYPE="TypeLib" NAME=" OPC Labs EasyOPC Type

Library" UUID="{ FAB7A1lE3-3B79-4292-9C3A-DF39A6F65ECL}"
VERSION="5.1"-->

Note that referencing the type library in WSH or ASP is only needed if you want to
use certain features, such as the named constants included in the library. It is not
necessary to reference the type library for simply instantiating the components and
making methods calls, as for method calls, VBScript or JScript code in WSH or ASP can
interrogate the created objects and use late binding to perform the calls.

It is also possible to do away with referencing the component in Visual Basic 6.0 and
Visual Basic for Applications, and proceed simply to instantiating the object(s) as
described further below, in a way similar to VBScript, but you would lose several
features such as the early-binding, IntelliSense, and ability to use symbolic objects
names and enumeration constants from the type library.

Naming Conventions

In addition to being compliant with common Microsoft recommendations for names,
and in QuickOPC.NET with Microsoft .NET Framework guidelines for names,
QuickOPC follows certain additional naming conventions:

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 25 of 91

Microsoft

Net

Microsoft

Net

Microsoft,

Net

CODE Consulting and Development, s.r.o. e ' - (OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N ﬁ Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

o Types which are specific to very simplified (“easy”) model for working with
OPC start with the prefix Easy.

e Types which are specific to OPC Data Access start with DA (or EasyDA) prefix,
types which are specific to OPC Alarms and Events start with AE (or EasyAE)
prefix. Types that are shared among multiple OPC specifications do not have
these prefixes.

Note that the second convention works in addition and together with the fact that
there are separate DataAccess and AlarmsAndEvents namespaces for this purpose
too.

The above described conventions also give you a bit of hint where to look for a
specific type, if you know its name. For example, if the name starts with DA or
EasyDA, the type is most likely in the OpcLabs.EasyOpc.DataAccess namespace.
Without any special prefix, the type is likely to be in the OpcLabs.EasyOpc
namespace.

Components and Objects

QuickOPC is a library of many objects. They belong into two basic categories:
Computational objects provide "plumbing” between OPC servers and your
application. They are invisible to the end user. User interface objects provide OPC-
related interaction between the user and your application.

Computational Objects

For easy comprehension, there is just one computational object that you need to
start with, for each OPC specification: For OPC Data Access, it is the EasyDAClient
object. For OPC Alarms and Events, it is the EasyAEClient object. All other
computational objects are helper objects (see further in this chapter). You achieve all
OPC computational tasks by calling methods on one of these objects. The remainder
of this paragraph describes the use of EasyDAClient object; the steps for
EasyAEClient object are similar.

In order to be able to use the EasyDAClient object, you need to instantiate it first.
In QuickOPC.NET, there are two methods that you can use:

e Write the code that creates a new instance of the object, using am operator
such as New (Visual Basic), new (Visual C#) or gcnew (Visual C++).

e Dragthe component from the Toolbox to the designer surface. This works
because EasyDAClient object is derived from

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 26 of 91

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic

o Al ® ,
= g OPC
e-mail: sales09@opclabs.com, Web: www.opclabs.com 02U ND AT | 0N Labs
| M EmMBER |

tel. +420 603 214 412, fax +420 378 600 795

System.ComponentModel.Component (but is not limited to be used as a
“full” component only). You can use this approach in Windows Forms
applications, and in Console and some other types of applications if you first
add a designable component to your application. The designer creates code
that instantiates the component, assigns a reference to it to a field in the
parent component, and sets its properties as necessary. You can then use
designer’s features such as the Properties grid to manipulate the component.

To add the EasyDAClient component to the Toolbox (you only need to this once):

Right-click on the Toolbox, and select “Choose Items...”.

EasyDAClient
i Language: Inwariant Language drwvariant Countrgd

Choose Toolbox Iterns @
Sikeerlight Components SysternMéorkflow Carmponents | Systern.Activities Components
MET Framewark Components COM Camponents | WPF Camponents
Marne Marmespace Assernbly Marme m
DaornainValidator Microsoft\Meb ULWebContrals Microsoft\Web.Domainend...

¥ EasyAEClient Opclabs.EasyOpc.flarmsfndBvents Opclabs.EasyOpcClassic (3.1,

"l EasyyDAClient Opclabs.Easy 0 3 Opclabs.Easy (5.1..
ComputerBrowserDialog Opclabs.EasyOpe.Dataficeess Forms Opclabs.EasyOpeClassicFar.,
ConcreteCormmonDialog Opclabs.EasyOpe.Datadceess Forrms Opclabs.EasyOpeClassicFar., Tl
OpcDaltermDialog Opclabs.BasyOpc.Dataficcess.Farms Opclabs.BasyOpeClassicFor.,
OpcDA&PropertyDialog Opclabs.EasyOpe.Datadceess Forrms Opclabs.EasyOpeClassicFar.,
OpcServerDialog Opclabs.EasyOpe.Dataficeess Forms Opclabs.EasyOpeClassicFar.,
OPCDataMETEngine Opclabs.EasyOpe. SwtbExtenderRe.. Opclabs.EasyOpeClassicExte..

¥ BackgroundWorker Systern,Componenthodel Systern |
e s mmmm + T amdm e (T i m mim L, e Y | o amdem

1| i1} 3

Filter:

Browse.,.,

In the “Choose Toolbox Items” dialog, select “.NET Framework Components” tab, and
sort the component by their namespace by clicking on the “Namespace” column

header.

Then, look for “EasyDAClient” in the Name column (this is if you plan to use OPC Data
Access). Check the box next to it, and press OK. The EasyDAClient item should appear
in the Toolbox (note: it will only be visible in the proper context, i.e. when you have

selected an appropriate parent component in the designer, or when you check “Show

All” in the Toolbox context menu).

For OPC Alarms and Events, check “EasyAEClient” component.

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 27 of 91

CODE Consulting and Development, s.r.o. ool ' - , OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N ﬁ Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

com

PP

Microsoft

Net

For Windows Forms user interface components, check the components that you want
under the “OpclLabs.EasyOpc.DataAccess.Forms” namespace.

In QuickOPC-COM, the precise way to instantiate the object depends on the
programming language you are using. For example:

e |n Visual Basic 6.0 and Visual Basic for Applications, if you have referenced
the component(s), use the New keyword with the appropriate class name.

e In VBScript (or in VB if you have not referenced the component), use the
CreateObject function with the ProglID of the class.

e InJScript, use the ‘new ActiveXObject(...)’ construct, with the ProglID of the
class.

e In C++, create the smart interface pointer passing ‘__uuidof(...)’ to the
constructor, using the CLSID of the class.

e In Delphi (Object Pascal), call .Create on the class type create by importing
the type library.

e In PHP, use the ‘new COM(...)’ construct, with the ProglD of the class.

e In Python, use ‘win32com.client.Dispatch(...)" construct, with the ProglID of
the class.

e InVisual FoxPro, use the CREATEOBJECT function with the ProgID of the class.

Following table contains information that is needed by different languages to
instantiate the object(s):

EasyDAClient F1B8E6D7-955F-4C12- | OPClabs.EasyDAClient.5.1 | OPCLabs.EasyDAClient
A015-9EF6282F73CC

EasyAEClient ED35FC37-84EE-47BD- | OPClabs.EasyAEClient.5.1 | OPCLabs.EasyAEClient
ADBA-BAA195B9B211

Default Instance

Instead of explicitly instantiating the EasyDAClient (or EasyAEClient) objects, you can
also use a single, pre-made instance of it, resulting in shorter code. You can access it
as a DefaultInstance static property on EasyDAClient (or EasyAEClient), and it
contains a default, shared instance of the client object.

Use this property with care, as its usability is limited. Its main use is for testing, and
for non-library application code where just a single instance is sufficient.

The default instance is not suitable for Windows Forms or similar environments,
where a specific SynchronizationContext may be used with each form.

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 28 of 91

Microsoft

Net

CODE Consulting and Development, s.r.o. ool ' - , OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N ﬁ Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

P

Com

We also do not recommend using the default instance for library code, due to
conflicts that may arise if your library sets some instance parameters which may not
be the same as what other libraries or the final application expects.

User Interface Objects

In QuickOPC.NET, you instantiate a user interface object in Windows Forms
applications by dragging the appropriate component from the Toolbox to the
designer surface. The designer creates code that instantiates the component, assigns
a reference to it to a field in the parent component, and sets its properties as
necessary. You can then use designer’s features such as the Properties grid to
manipulate the component.

To add the user interface components to the Toolbox (you only need to this once):
Right-click on the Toolbox, and select “Choose Items...”. In the “Choose Toolbox
Items” dialog, select “.NET Framework Components” tab, and look for
“OpcDAltemDialog”, “ OpcDAPropertyDialog”, and “OpcServerDialog” in the Name
column. Check the boxes next to them, and press OK. The OpcDAltemDialog,
OpcDAPropertyDialog, and OpcServerDialog items should appear in the Toolbox
(note: they will only be visible in the proper context, i.e. when you have selected an
appropriate parent component in the designer, or when you check “Show All” in the
Toolbox context menu).

In QuickOPC-COM, you instantiate a user interface object in the same way as
computational object (described above). Following table contains information
needed to do so.

OPCUserBrowseMachine | E13AC35E-CF9A- OPCLabs.UserBrowseMachine
466a-A939-
D02964A2AEF3

OPCUserBrowseServer 122D4DOE-BC48- OPClabs.UserBrowseServer
45¢2-B5CB-
51D9D703F364

OPCUserBrowseltem 19BB7459-5D7F- OPClabs.UserBrowseltem
4d63-A119-
A2803C1B2568

OPCUserSelectltem 4E619C32-AF14- OPClLabs.UserSelectltem
4d69-8056-
02B4BE13A47F

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 29 of 91

CODE Consulting and Development, s.r.o. e ' - (OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N ﬁ Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

Stateless Approach

OPC is inherently stateful. For starters, connections to OPC servers are long-living
entities with rich internal state, and other objects in OPC model such as OPC groups
have internal state too. QuickOPC hides most of the OPC's stateful nature by
providing a stateless interface for OPC tasks.

This transformation from a stateful to a stateless model is actually one of the biggest
advantages you gain by incorporating QuickOPC. There are several advantages to a
stateless model from the perspective of your application. Here are the most
important of them:

e The code you have to write is shorter. You do not have to make multiple
method calls to get to the desired state first. Most common tasks can be
achieved simply by instantiating an object (needed just once), and making a
single method call.

e You do not have to worry about reconstructing all the state after some
failure. QuickOPC reconstructs the OPC state silently in background when
needed. This again brings tremendous savings in coding.

The internal state of QuickOPC components (including e.g. the connections to OPC
servers) outlives the lifetime of the individual instances of the main EasyDAClient or
EasyAEClient object. You can therefore create an instance of this object as many
times as you wish, without incurring performance penalty to OPC communications.
This characteristic comes extremely handy in programming server-side Web
applications and similar scenarios: You can implement your code on page level, and
make OPC requests from the page code itself. The OPC connections will outlive the
page round-trips (if this was not the case, the OPC server would become bogged
down quickly).

Simultaneous Operations

OPC works with potentially large quantities of relatively small data items that may
change rapidly in time. In order to handle this kind of load effectively, it is necessary
to operate on larger “chunks” of data whenever possible. When there is an operation
to be performed on multiple elements, the elements should be passed to the
operation together, and the results obtained together as well.

In order to ensure high efficiency, your code should allow the same. This is achieved
by calling methods that are designed to work on multiple items in parallel. Where it
makes sense, QuickOPC provides such methods, and they contain the work Multiple
in their names. For example, for reading a value of an OPC item, a method named

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 30 of 91

Microsoft

Net

CODE Consulting and Development, s.r.o. e ' - , OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N ﬁ Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

ReadltemValue exists on the EasyDAClient object. There is also a corresponding
method named ReadMultipleltemValues which can read multiple OPC items at once.
It is strongly recommended that you call the methods that are designed for
simultaneous operation wherever possible.

Methods for simultaneous operation return an array of OperationResult objects, or
its derivatives. Each element in the output array corresponds to an element in the
input array with the same index. Some methods or method overloads take multiple
arguments, where some arguments are common for all elements, and one of them is
the input array that has parts that are different for each element. There is always one
method overload that takes a single argument which is an array of
OperationArguments objects; this is the most generic method overload that allows
each element be fully different from other elements.

Error Handling

Various kinds of errors may be returned by QuickOPC, e.g.:

e Errors returned by system calls when performing OPC-related operations.

e Errors returned by COM/DCOM infrastructure, including RPC and network-
related errors.

e Errors reported by the OPC server you are connecting to.

e Errors detected by the QuickOPC library.

In general, you cannot safely prevent these errors from happening. Many conditions
external to your code can cause OPC failures, e.g. network problems, improper OPC
server configuration, etc. For this reason, you should always expect than OPC
operation can fail.

QuickOPC.NET defines one new type of exception, called OpcException, derived from
Exception object. This exception is for all errors arising from OPC operations.

More details about the cause of the problem can be found by interrogating the
InnerException property of OpcException, or by examining the ErrorCode property.
In most scenarios, however, your code will be handling all OpcException-s in the
same way.

If you need to display a meaningful error message to the user, or log it for further
diagnostics, it is best to take the OpcException instance, obtain its base exception
using GetBaseException method, and retrieve its Message property. The error
message obtained in this way is closest to the actual cause of the problem.

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 31 of 91

CODE Consulting and Development, s.r.o. e ' - , OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N ﬁ Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

PP

comM

QuickOPC.NET even tries to fill in the error text in cases when the system or OPC
server has not provided it.

It should be noted that for QuickOPC.NET operations, OpcException is the ONLY
exception class that your code should be explicitly catching when calling QuickOPC
methods or getting properties. This is because you cannot safely influence or predict
whether the exception will or will not be thrown. Other kinds of exception, such as
those related to argument checking, should NOT be caught by typical application
code, because they either indicate a programming bug in your code, or an
irrecoverable system problem.

In QuickOPC-COM, the actual error handling concepts (and related terminology)
depend strongly on the programming language and development tool you are using,
for example:

e In C++4, if you are using the raw interfaces provided by the type library, each
function call will return an HRESULT value that you will test using macros
such as SUCCEEDED() or FAILED().

e In C++4, if you are using “Compiler COM Support” (the #import directive),
errors will be converted to exceptions of _com_error type.

e In VBScript, failed function calls will either generate run-time error (with On
Error Goto 0), or fill in the Err object with information about the error (with
On Error Resume Next).

Errors and Multiple-Element Operations

Some methods on the main EasyDAClient object operate on multiple elements (such
as OPC items) at once, and they also return results individually for each of the input
elements. Such methods cannot simply throw an exception when there is a problem
with processing one of the elements, because throwing an exception would make it
impossible to further process other elements that are not causing errors. In addition,
exception handling is very slow, and we need some efficient mechanism for dealing
with situations when there may be multiple errors occurring at once.

For this reason, methods that work on multiple elements return an array of results,
and each result may have an Exception associated with it. If this exception is a null
reference, then there has been no error processing the operation on the element,
and other data contained in the result object is valid. When the exception is not a null
reference, it contains the actual error.

For multiple-element operations, the element-level exceptions are not wrapped in
OpcException, because there is no need for you to distinguish them from other

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 32 of 91

CODE Consulting and Development, s.r.o. e ' - (OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N ﬁ Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

A

comM

exception types in the catch statement. If there is an exception inside a multiple-level
operation, it is always an exception related to OPC operations. The Exception
property of the result object in a multiple-element operation therefore contains what
would be the InnerException of the OpcException thrown for a single-element
operation.

Exceptions that are not related to OPC operations, such as argument-checking
exceptions, are still thrown directly from the multiple-element operations, i.e. they
are not returned in the OperationResult object.

Errors in Subscriptions

Similarly as with multiple-element operations (above), errors in subscriptions are
reported to your code by means of an Exception property in the event arguments
passed to your event handler or callback method. If this exception is a null reference,
then there has been no error related to the event notification, and other data
contained in the event arguments object is valid. When the exception is not a null
reference, it contains the actual error.

In event notifications, the exceptions are not wrapped in OpcException, because
there is no need for you to distinguish them from other exception types in the catch
statement. If there is an exception related to the event notification, it is always an
exception related to OPC operations.

Helper Types

The types described here do not directly perform any OPC operations, but are
commonly used throughout QuickOPC for properties and method arguments.

Dictionary Object

An associative array is used at several places in QuickOPC-COM interface, providing a
way to store items associated with unique keys. The associative array is represented
using a Dictionary object provide by Microsoft in their Scripting Runtime Library. For
details, see http://msdn.microsoft.com/en-us/library/x4k5wbx4(VS.85).aspx.

Time Periods

Many method arguments and properties describe time periods, such as update rates,
delays, timeouts etc. For consistency, they are all integers, and they are expressed as
number of milliseconds.

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 33 of 91

http://msdn.microsoft.com/en-us/library/x4k5wbx4(VS.85).aspx

Microsoft

Net

CODE Consulting and Development, s.r.o. ool ' - , OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N ﬁ Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

=
O_COM

Microsoft

Net

Some method arguments and properties (but only some — see Reference
documentation for each method argument or property) allow a special value that
represents an “infinite” time period.

In QuickOPC.NET, the value for “infinite” time period is equal to Timeout.Infinite
(from System.Threading namespace).

Note: Time periods should not be confused with absolute time information, which is
usually expressed by means of DateTime structure.

In QuickOPC-COM, the value for “infinite” time period is equal to -1.

Note: Time periods should not be confused with absolute time information, which is
usually expressed by means of Windows DATE data type.

OPC Quality

OPC represents a quality of a data value by several bit-coded fields. QuickOPC.NET
encapsulates the OPC quality in a DAQuality class. The bit fields in OPC quality are
inter-dependent, making it a bit complicated to encode or decode it. The DAQuality
type takes care of this complexity. In addition, it offers symbolic constants that
represent the individual coded options, and also has additional functionality such as
for converting the quality to a string.

The following table attempts to depict the elements of DAQuality and their relations:

DAQuality
property QualityChoice QualityChoiceBitField | SubStatus | property DALimitChoice LimitBitField
{get; } { get; set; }
IsBad()
IsGood()

IsUncertain()

property DAStatusChoice StatusBitField
{ get; set; }

SetQualityAndSubStatus(...)

You can see that the StatusBitField is actually consisted of QualityChoiceBitField, and
a SubStatus. But the semantics of SubStatus is highly dependent on
QualityChoiceBitField, and therefore the SubStatus cannot be accessed separately.
For the same reason, you cannot directly set the QualityChoiceBitField without
providing a value for SubStatus at the same time. Instead, you can call
SetQualityAndSubstatus method to modify the two fields at the same time.

Note that OPC Alarms and Events “borrows” the quality type from OPC Data Access,
and therefore the DAQuality structure is used with OPC Alarms and Events as well.

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 34 of 91

CODE Consulting and Development, s.r.o. e ' - (OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N ﬁ Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

Value, Timestamp and Quality (VTQ)

The combination of data value, timestamp and quality (abbreviated sometimes as
VTQ) is common in OPC. This combination is returned e.g. when an OPC item is read.
Note that according to OPC specifications, the actual data value is only valid when the
quality is Good or Uncertain (with certain exception).

QuickOPC has a DAVtq object for this combination. The object provides access to
individual elements of the VTQ combination, and also allows common operations
such as comparisons. It can also be easily converted to a string containing textual
representation of all its elements.

If you only want a textual representation for a data value from the VTQ, use the
DisplayValue method. This is recommended over trying to extract the Value property
and converting it to string, as you will automatically receive an empty string if the
value is not valid according to OPC rules (e.g. Bad quality), and a null reference case is
handled as well.

Result Objects

Result objects are returned by methods that work on multiple elements
simultaneously such as EasyDAClient.ReadMultipleltems. Such methods return an
array of OperationResult objects, or an array of objects derived from
OperationResult. This approach is chosen, among other reasons, because the
method cannot throw an exception if an operation on a single element fails.

Each OperationResult has an Exception property, which indicates the outcome of the
operation. If the Exception is a null reference, the operation has completed
successfully. There is also a State property, which contains user-defined information
that you have passed to the method.

The objects derived from OperationResult have additional properties, which contain
the actual results in case the operation was successful. Such objects are e.g.
ValueResult (contains a data value), or DAVtgResult (contains value, timestamp, and
quality combination).

Variant Type (VarType)

In some places in OPC, your code needs to indicate which type of data you expect to
receive back, or (in the opposite direction), you receive indication about which type
of data certain piece of information is. OPC uses Windows VARTYPE for this
(describes a data contained in Windows VARIANT).

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 35 of 91

Microsoft

Net

CODE Consulting and Development, s.r.o. e ' - , OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N ﬁ Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

R

COoOM

QuickOPC.NET gives you a .NET encapsulation for indicating variant data types, so
that you do not have to look up and code in the numeric values of Windows
VARTYPE. Instead, wherever you see that a method argument, a property, or other
element is of VarType type, you can supply one of the constants defined in the
VarType. For example, VarType.l2 denotes a 16-bit signed integer, VarType.R4
denotes a 32-bit float, and VarType.BStr denotes a string. For arrays of values, use
logical ‘or’ to combine the element type with VarType.Array constant.

Note: Microsoft.NET framework contains a similar type,
System.Runtime.InteropServices.VarEnum. The types have some similarities, but
should not be confused.

QuickOPC-COM gives you an enumeration for indicating variant data types, so that
you do not have to look up and code in the numeric values of Windows VARTYPE.
Instead, wherever you see that a method argument, a property, or other element
accepts a data type, you can supply one of the constants defined in the VarType
enumeration. For example, VTI2 denotes a 16-bit signed integer, VTR4 denotes a 32-
bit float, and VTBStr denotes a string. For arrays of values, use logical ‘or’ to combine
the element type with VTArray constant. Note, however, that the enumeration
symbols are only accessible if you reference or import the EasyOPC Type Library, and
not all languages and tools are capable of doing it.

Element Objects

Element objects contain all information gathered about some OPC entity. They are
typically returned by browsing methods. There are following types of element
objects:

o ServerElement object contains information gathered about an OPC server.

e DANodeElement object contains information gathered about an OPC node
(branch or leaf in OPC Data Access server's address space).

o DAPropertyElement contains information gathered about an OPC Data
Access property.

e AEAttributeElement contains information gathered about an OPC Alarms and
Events attribute.

e AECategoryElement contains information gathered about an OPC Alarms and
Events category.

e AEConditionElement contains information gathered about an OPC Alarms
and Events condition.

o AENodeElement object contains information gathered about an OPC node
(areas or source in OPC Alarms and Events server's address space).

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 36 of 91

Microsoft

Net

CODE Consulting and Development, s.r.o. e ' - (OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N ﬁ Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

e AESubconditionElement contains information gathered about an OPC Alarms
and Events subcondition.

Element objects are also returned when you invoke one of the common OPC dialogs
for selecting OPC server, OPC-DA item or an OPC-DA property.

Descriptor Objects

A descriptor object contains information that fully specifies certain OPC entity (but
does not contain any “extra” information that is not needed to identify it uniquely).
Descriptor objects are used by some method overloads to reduce the number of
individual arguments, and to organize them logically. There are following types of
descriptor objects:

e ServerDescriptor contains information necessary to identify and connect to
an OPC server, such as the server's ProgID.

e DAIltemDescriptor contains information necessary to identify an OPC item,
such as its Item Id.

If you have received an element object (e.g. from browsing methods or common OPC
dialogs), you can convert it to a descriptor object. For example, there is a constructor
for ServerDescriptor object that accepts ServerElement as an input, and there is a
constructor for DAltemDescriptor object that accepts DANodeElement as an input,
too.

Parameter Objects

Parameter objects are just holders for settings that influence certain aspect of how
QuickOPC works (for example, timeouts). There are several types of parameter
objects (such as Timeouts, HoldPeriods, and more). For more information, see the
“Setting Parameters” and “Advanced Topics” chapters, and also the Reference
documentation.

Note that there is no way for your code to create new instances of parameter objects
(and assign them to properties of main EasyDAClient or EasyAEClient object). Your
code simply manipulates properties of parameter objects that are already created
and made available to you.

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 37 of 91

CODE Consulting and Development, s.r.o. e ' - (OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N ﬁ Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

OPC Data Access Tasks

This chapter gives you guidance in how to implement the common tasks that are
needed when dealing with OPC Data Access server from the client side. You achieve
these tasks by calling methods on the EasyDAClient object.

Obtaining Information

Methods described in this chapter allow your application to obtain information from
the underlying data source that the OPC server connect to (reading OPC items), or
from the OPC server itself (getting OPC property values). It is assumed that your
application already somehow knows how to identify the data it is interested in. If the
location of the data is not known upfront, use methods described in Browsing for
Information chapter first.

Reading from OPC Items

In OPC Data Access, reading data from OPC items is one of the most common tasks.
The OPC server generally provides current data for any OPC item in form of a Value,
Timestamp and Quality combination (VTQ).

If you want to read the current VTQ from a specific OPC item, call the Readltem
method. You pass in individual arguments for machine name, server class, IltemlID,
and an optional data type. You will receive back a DAVtq object holding the current
value, timestamp, and quality of the OPC item. The Readltem method returns the
current VTQ, regardless of the quality. You may receive an Uncertain or even Bad
quality (and no usable data value), and your code needs to deal with such situations
accordingly.

Microsoft

Net

In QuickOPC.NET, you can also pass ServerDescriptor and DAltemDescriptor objects
in place of individual arguments to the Readltem method.

For reading VTQs of multiple items simultaneously in an efficient manner, call the
ReadMultipleltems method (instead of multiple Readltem calls in a loop). You will
receive back an array of DAVtgResult objects.

Microsoft

Net

In QuickOPC.NET, you can pass in a ServerDescriptor object and an array of
DAltemDescriptor objects, or an array of DAltemArguments objects, to the
ReadMultipleltems method.

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 38 of 91

com

P

Microsoft

Net

com

P

Microsoft

Net

Microsoft

Net

CODE Consulting and Development, s.r.o. e ' - , OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N ﬁ Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

In QuickOPC-COM, in place of each Readltem argument, you can pass in an array of
values, or (if the value is the same for the whole operation, e.g. the machine name), a
single value as with the Readltem call, to the ReadMultipleltems method.

Some applications need the actual data value for further processing (e.g. for
computations that need be performed on the values), even if it involves waiting a
little for the quality to become Good. For such usage, call the ReadltemValue
method, passing it the same arguments as to the Readltem method. The method will
wait until the OPC item’s quality becomes Good (or until a timeout expires), and you
will receive back an Object (a VARIANT in QuickOPC-COM) holding the actual data
value.

For reading just the data values of multiple data values (with wait for Good quality) in
an efficient manner, call the ReadMultipleltemValues method (instead of multiple
ReadltemValue calls in a loop). You will receive back an array of ValueResult objects.

In QuickOPC.NET, you can pass in a ServerDescriptor object and an array of
DAltemDescriptor objects, or an array of DAltemArguments objects, to the
ReadMultipleltemValues method.

In QuickOPC-COM, in place of each ReadltemValue argument, you can pass in an
array of values, or (if the value is the same for the whole operation, e.g. the machine
name), a single value as with the ReadltemValue call, to the
ReadMultipleltemValues method.

Note: You can set the DesiredValueAge in ClientMode property to control how “old”
may be the values you receive by reading from OPC items. Be aware that it is
physically impossible for any system to always obtain fully up-to-date values.

Getting OPC Property Values

Each OPC item has typically associated a set of OPC properties with it. OPC properties
contain additional information related to the item.

If you want to obtain the value of specific OPC property, call the GetPropertyValue
method, passing it the machine name, server class, the Itemld, and a Propertyld. You
will receive back an Object (a VARIANT in QuickOPC-COM) containing the value of the
requested property.

In QuickOPC.NET, you can also pass in the ServerDescriptor inplace of the machine
name and server class strings.

There are many property-related methods in EasyOPC.NET Extensions component.
Please refer to a chapter in this document that describes EasyOPC.NET Extensions.

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 39 of 91

Microsoft

Net

Microsoft

Net

Q

CODE Consulting and Development, s.r.o. e ' - (OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N ﬁ Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

O
O

COoOM

For obtaining multiple properties simultaneously in an efficient manner, call the
GetMultiplePropertyValues method (instead of multiple GetPropertyValue calls in a
loop). The arguments are similar, except that in place of a single Propertyld you pass
in an array of them. You will receive back an array of Object values (a SAFEARRAY of
VARIANT values in QuickOPC-COM).

Modifying Information

Methods described in this chapter allow your application to modify information in the
underlying data source that the OPC server connects to (writing OPC items). It is
assumed that your application already somehow knows how to identify the data it is
interested in. If the location of the data is not known upfront, use methods described
Browsing for Information chapter first.

Writing to OPC Items

If you want to write a data value into a specific OPC item, call the WriteltemValue
method, passing it the data value you want to write, arguments for machine name,
server class, ItemID, and an optional data type.

In QuickOPC.NET, you can also pass in the ServerDescriptor and DAltemDescriptor
objects in place of corresponding individual arguments.

For writing data values into multiple OPC items in an efficient manner, call the
WriteMultipleltemValues method.

In QuickOPC.NET, you pass in an array of DAltemValueArgument objects, each
specifying the location of OPC item, and the value to be written.

In QuickOPC-COM, in place of each WriteltemValue argument, you can pass in an
array of values, or (if the value is the same for the whole operation, e.g. the machine
name), a single value as with the WriteltemValue call.

Some newer OPC servers allow a combination of value, timestamp, and quality (VTQ)
be written into their items. If you need to do this, call Writeltem or
WriteMultipleltems method.

Browsing for Information

QuickOPC contains methods that allow your application to retrieve and enumerate
information about OPC servers that exist on the network, and data available within
these servers. Your code can then make use of the information obtained, e.g. to
accommodate to configuration changes dynamically.

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 40 of 91

Microsoft

Net

CODE Consulting and Development, s.r.o. e ' - (OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N ﬁ Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

P

com

Note that if you just want to allow your user to browse interactively for various OPC
elements, you can simply code your application to invoke the common dialogs that
are already implemented in QuickOPC (they are described further down in this
document). The methods we are describing here are for programmatic browsing,
with no user interface (or when you provide the user interface by your own code).

Browsing for OPC Servers

If you want to retrieve a list of OPC Data Access servers registered on a local or
remote computer, call the BrowseServers method, passing it the name or address of
the remote machine (use empty string for local computer).

In QuickOPC.NET, you will receive back a ServerElementCollection object. If you want
to connect to this OPC server later in your code by calling other methods, use the
built-in conversion of ServerElement to String, and pass the resulting string as a
serverClass argument either directly to the method call, or to a constructor of
ServerDescriptor object.

In QuickOPC-COM, you will receive back a Dictionary of ServerElement objects. If you
want to connect to this OPC server later in your code by calling other methods, obtain
the value of ServerElement.ServerClass property, and pass the resulting string as a
serverClass argument to the method call that accepts it.

Each ServerElement contains information gathered about one OPC server found on
the specified machine, including things like the server’s CLSID, ProgID, vendor name,
and readable description.

Browsing for OPC Nodes (Branches and Leaves)

Items in an OPC server are typically organized in a tree hierarchy (address space),
where the branch nodes serve organizational purposes (similar to folders in a file
system), while the leaf nodes correspond to actual pieces of data that can be
accessed (similar to files in a file system) — the OPC items. Each node has a “short”
name that is unique among other branches or leaves under the same parent branch
(or aroot). Leaf nodes can be fully identified using a “long” ItemID, which determines
the OPC item without a need to further qualify it with its position in the tree. ltemIDs
may look like “Devicel.Block101.Setpoint”, however their syntax and meaning is fully
determined by the particular OPC server they are coming from.

QuickOPC gives you methods to traverse through the address space information and
obtain the information available there. It is also possible to filter the returned nodes
by various criteria, such as node name matching certain pattern, or a particular data
type only, or writeable items only, etc.

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 41 of 91

Microsoft

Net

CODE Consulting and Development, s.r.o. e ' - , OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N ﬁ Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

If you want to retrieve a list of all sub-branches under a given branch (or under a
root) of the OPC server, call the BrowseBranches method. In QuickOPC.NET, you will
receive back a DANodeElementCollection object. In QuickOPC-COM, you will receive
back a Dictionary of DANodeElement objects. Each DANodeElement contains
information gathered about one sub-branch node, such as its name, or indication
whether it has children. Similarly, if you want to retrieve a list of leaves under a given
branch (or under a root) of the OPC server, call the BrowseLeaves method. You will
also receive back a DANodeElementCollection object (in QuickOPC.NET) or a
Dictionary of DANodeElement objects(in QuickOPC-COM), this time containing the
leaves only. You can find information such as the Item ID from the DANodeElement
of any leaf, and pass it further to methods like Readltem or Subscribeltem.

The most generic address space browsing method is BrowseNodes. It combines the
functionality of BrowseBranches and BrowselLeaves, and it also allows the widest
range of filtering options by passing in an argument of type DANodeFilter (in
QuickOPC.NET), or individual arguments for data type filter and access rights filter (in
QuickOPC-COM).

Browsing for OPC Access Paths

Access paths are somewhat obsolete feature of OPC Data Access specification, and
few OPC server actually use it; but if a particular OPC server does use access paths,
specifying the proper access path together with ItemID may be the only way to
retrieve the data you want.

If you want to retrieve a list of possible access paths available for a specific OPC item,
call the BrowseAccessPaths method, passing it the information about the OPC server,
and the ItemID. You will receive back an array of strings; each element of this array is
an access path that you can use with methods such as Readltem or Subscribeltem.

In QuickOPC.NET, you can also pass the access path to a constructor of
DAltemDescriptor object and later use that descriptor with various methods.

Browsing for OPC Properties

Each OPC item has typically associated a set of OPC properties with it. OPC properties
contain additional information related to the item. The OPC specifications define a
set of common properties; however, each OPC server is free to implement some
more, vendor-specific properties as well.

If you want to retrieve a list of all properties available on a given OPC item, call the
BrowseProperties method, passing it the ItemID you are interested in. In
QUickOPC.NET, you will receive back a DAPropertyElementCollection object. In

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 42 of 91

Microsoft

Net

CODE Consulting and Development, s.r.o. ool ' - , OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N ﬁ Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

QuickOPC-COM, you will receive back a Dictionary of DAPropertyElement objects.
Each DAPropertyElement contains information about one OPC property, such as its
(numeric) Propertyld, data type, or a readable description. The Propertyld can be
later used as an argument in calling methods such as GetPropertyValue.

Subscribing for Information

If your application needs to monitor changes of certain process value (OPC item), it
can subscribe to it, and receive notifications when the value changes. For
performance reasons, this approach is preferred over repeatedly reading the item’s
value (polling). Note that QuickOPC has internal optimizations which greatly reduce
the negative effects of polling, however subscription is still preferred.

QuickOPC contains methods that allow you to subscribe to OPC items, change the
subscription parameters, and unsubscribe.

Subscribing to OPC Items

Subscription is initiated by calling either Subscribeltem or SubscribeMultipleltems
method. For any change in the subscribed item’s value, your application will receive
the ItemChanged event notification, described further below. Obviously, you first
need to hook up event handler for that event, and in order to prevent event loss, you
should do it before subscribing. Alternatively, you can pass a callback method into the
Subscribeltem or SubscribeMultipleltems call.

Values of some items may be changing quite frequently, and receiving all changes
that are generated is not desirable for performance reasons; there are also physical
limitations to the event throughput in the system. Your application needs to specify
the requested update rate, which effectively tells the OPC server that you do not
need to receive event notifications any faster than that. For OPC items that support
it, you can optionally specify a percent deadband; only changes that exceed the
deadband will generate an event notification.

In QuickOPC.NET, the requested update rate, percent deadband, and data type are all
contained in a DAGroupParameters object.

If you want to subscribe to a specific OPC item, call the Subscribeltem method. You
can pass in individual arguments for machine name, server class, ItemlID, data type,
requested update rate, and an optional percent deadband. Usually, you also pass in a
State argument of type Object (in QuickOPC.NET) or VARIANT (in QuickOPC-COM).
When the item’s value changes, the State argument is then passed to the
ItemChanged event handler in the EasyDAltemChangedEventArgs object. The

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 43 of 91

CODE Consulting and Development, s.r.o. e ' - , OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N ﬁ Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

Subscribeltem method returns a subscription handle that you can later use to change
the subscription parameters, or unsubscribe.

Microsoft

n_e-t In QuickOPC.NET, you can also pass in a combination of ServerDescriptor,
® DAltemDescriptor and DAGroupParameters objects, in place of individual
arguments.

The State argument is typically used to provide some sort of correlation between
objects in your application, and the event notifications. For example, if you are
programming an HMI application and you want the event handler to update the
control that displays the item’s value, you may want to set the State argument to the
control object itself. When the event notification arrives, you simply update the
control indicated by the State property of EasyDAltemChangedEventArgs, without
having to look it up by Itemld or so.

To subscribe to multiple items simultaneously in an efficient manner, call the
SubscribeMultipleltems method (instead of multiple Subscribeltem calls in a loop).
You receive back an array of HandleResult objects (containing the subscription
handles).

Microsoft

n_G't In QuickOPC.NET, you pass in an array of DAltemGroupArguments objects (each
N containing information for a single subscription to be made), to the
SubscribeMultipleltems method.

) In QuickOPC-COM, you pass in an array or arrays of arguments (each element

COM containing information for a single subscription to be made, to the

a's

SubscribeMultipleltems method.

Note: It is NOT an error to subscribe to the same item twice (or more times), even
with precisely same parameters. You will receive separate subscription handles, and
with regard to your application, this situation will look no different from subscribing
to different items. Internally, however, the subscription made to the OPC server will
be optimized (merged together) if possible.

There is also an event called MultipleltemsChanged that can deliver multiple item
changes in one call to the event handler. See Multiple Notifications in One Call in
Advanced Topics for more.

Changing Existing Subscription

It is not necessary to unsubscribe and then subscribe again if you want to change
parameters of existing subscription (such as its update rate). Instead, change the
parameters by calling the ChangeltemSubscription method, passing it the

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 44 of 91

Microsoft

Net

CODE Consulting and Development, s.r.o. e ' - (OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N ﬁ Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

PP

com

subscription handle, and the new parameters in form of DAGroupParameters object
(in QuickOPC.NET) or individually a requested update rate, and optionally a percent
deadband (in QuickOPC-COM).

For changing parameters of multiple subscriptions in an efficient manner, call the
ChangeMultipleltemSubscriptions method.

Unsubscribing from OPC Items

If you no longer want to receive item change notifications, you need to unsubscribe
from them. To unsubscribe from a single OPC item, call the Unsubscribeltem method,
passing it the subscription handle.

To unsubscribe from multiple OPC items in an efficient manner, call the
UnsubscribeMultipleltems method (instead of calling Unsubscribeltem in a loop),
passing it an array of subscription handles, or an array of HandleArguments objects.

You can also unsubscribe from all items you have previously subscribed to (on the
same instance of EasyDAClient object) by calling the UnsubscribeAllltems method.

If you are no longer using the parent EasyDAClient object, you do not necessarily
have to unsubscribe from the items, but it is highly recommended that you do so.

In QuickOPC.NET, the subscriptions will otherwise be internally alive until the .NET
CLR (garbage collector) decides to finalize and destroy the parent EasyDAClient
object (if ever); you cannot, however, determine that moment. You can alternatively
call the Dispose method of the EasyDAClient object’s IDisposable interface, which
will unsubscribe from all items for you.

In QuickOPC-COM, the subscriptions will otherwise be internally alive. You can
alternatively release all references to the EasyDAClient object, which will unsubscribe
from all items for you.

Item Changed Event or Callback

When there is a change in a value of an OPC item you have subscribed to, the
EasyDAClient object generates an ItemChanged event. For subscription mechanism
to be useful, you should hook one or more event handlers to this event.

To be more precise, the ltemChanged event is actually generated in other cases, too.

First of all, you always receive at least one ItemChanged event notification after you
make a subscription; this notification either contains the initial data for the item, or
an indication that data is not currently available. This behavior allows your

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 45 of 91

Microsoft

Net

Microsoft

Net

CODE Consulting and Development, s.r.o. e ' - (OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N ﬁ Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

application to rely on the component to provide at least some information for each
subscribed item.

Secondly, the ItemChanged event is generated every time the component loses
connection to the item, and when it reestablishes the connection. This way, your
application is informed about any problems related to the item, and can process
them accordingly if needed.

You will also receive the ItemChanged notification if the quality of the item changes
(not just its actual data value).

The ItemChanged event notification contains an EasyDAltemChangedEventArgs
argument. You will find all kind of relevant data in this object. Some properties in this
object contain valid information no matter what kind of change the notification is
about. These properties are ServerDescriptor, temDescriptor, GroupParameters,
Handle, and State.

For further processing, your code should always inspect the value of Exception
property of the event arguments. If this property is set to a null reference, the
notification carries an actual change in item’s data, and the Vtq property has the new
value, timestamp and quality of the item, in form of DAVtq object. If the Exception
property is not a null reference, there has been an error related to the item, and the
Vtq property is not valid. In such case, the Exception property contains information
about the problem.

The ItemChanged event handler is called on a thread determined by the
EasyDAClient component. For details, please refer to “Multithreading and
Synchronization” chapter under “Advanced Topics”.

In short, however, we can say that if you are writing e.g. Windows Forms application,
the component takes care of calling the event handler on the user interface thread of
the form, making it safe for your code to update controls on the form, or do other
form-related actions, from the event handler.

Using Callback Methods Instead of Event Handlers

Using event handlers for processing notifications is a standard way with many
advantages. There also situations, however, where event handlers are not very
practical. For example, if you want to do fundamentally different processing on
different kinds of subscriptions, you end up with all notifications being processed by
the same event handler, and you need to put in extra code to distinguish between
different kinds of subscriptions they come from. Event handlers also require
additional code to set up and tear down.

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 46 of 91

CODE Consulting and Development, s.r.o. e ' - , OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N ﬁ Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

PP

comM

In order to overcome these problems, QuickOPC components allow you to pass in

a delegate for a callback method to subscription methods. There are subscription
methods overloads that accept the callback method parameter. The callback method
has the same signature (arguments) as the event handler, and is called by the
component in addition to invoking the event handler (if you do not hook a handler to
the event, only the callback method will be invoked). You can therefore pass in the
delegate for the callback method right into the subscription method call, without
setting up event handlers.

The callback method can also be specified using an anonymous delegate or a lambda
expression, i.e. without having to declare the method explicitly elsewhere in your
code. This is especially useful for short callback methods.

For subscription methods that work with multiple subscriptions at once, there is also
a Callback property in the arguments objects that you can use for the same purpose.

Note that if you specify a non-null callback parameter to the subscription method,
the callback method will be invoked in addition to the event handlers. If you use both
event handlers and callback methods in the same application, and you do not want
the event handlers to process the notifications that are also processed by the callback
methods, you can either

- test the Callback property in the event arguments of the event handler, and if
it is not a null reference, the event has been processed by the callback method
and you can ignore it, or

- use two instances of the EasyDAClient (or EasyAEClient) object, and set up
event handlers on one instance and use the callback methods on the other
instance.

Setting Parameters

While the most information needed to perform OPC tasks is contained in arguments
to method calls, there are some component-wide parameters that are not worth
repeating in every method call, and also some that have wider effect that influences
more than just a single method call. You can obtain and modify these parameters
through properties on the EasyDAClient object.

In QuickOPC-COM, you can also modify these parameters by the EasyOPC Options
Utility, available from the Start menu.

Following are instance properties, i.e. if you have created multiple EasyDAClient
object, each will have its own copy of them:

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 47 of 91

Microsoft

Net

Microsoft

Net

CODE Consulting and Development, s.r.o. ool ' - , OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N ﬁ Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

A

comM

e (ClientMode: Specifies common parameters such as allowed and desired
methods of accessing the data in the OPC server.

e HoldPeriods: Specifies optimization parameters that reduce the load on the
OPC server.

o UpdateRates: Specifies the "hints" for OPC update rates used when other
explicit information is missing.

e Timeouts: Specifies the maximum amount of time the various operations are
allowed to take.

e SynchronizationContext: Contains synchronization context used by the
object when performing event notifications.

Instance properties can be modified from your code.

In QuickOPC.NET, if you have placed the EasyDAClient object on the designer surface,
most instance properties can also be directly edited in the Properties window in
Visual Studio.

In QuickOPC-COM, the EasyOPC Options utility is used to set the default values of
instance properties. Your code can override the defaults if needed.

Following properties are static, i.e. shared among all instances of EasyDAClient
object:

e EngineParameters: Contains global parameters such as frequencies of
internal tasks performed by the component.

e MachineParameters: Contains parameters related to operations that target a
specific computer but not a specific OPC server, such as browsing for OPC
servers using various methods.

e ClientParameters: Contains parameters that influence operations that target
a specific OPC server a whole.

e TopicParameters: Contains parameters that influence operations that target
a specific OPC item.

Static properties can only be modified from your code (in QuickOPC.NET) or using the
EasyOPC Options utility (in QuickOPC-COM). If you want to modify any of the static
properties, you must do it before the first instance of EasyDAClient or EasyAEClient
object is created.

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 48 of 91

Microsoft,

Net

CODE Consulting and Development, s.r.o. SN ® (4 OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic m— Ve &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N n Labs
tel. +420 603 214 412, fax +420 378 600 795 | _KEnmIE |

Please use the Reference documentation (and EasyOPC Options Help in QuickOPC-
COM) for details on meaning of various properties and their use.

OPC Common Dialogs

QuickOPC.NET contains a set of Windows Forms dialog boxes for performing common
OPC-related tasks such as selecting an OPC server or OPC item.

The dialog objects are all derived from System.Windows.Forms.CommonDialog,
providing consistent and well-known programming interface to use.
Computer Browser Dialog

OPC servers are usually deployed on the network, and accessed via DCOM. In order
to let the user select the remote computer where the OPC server resides, you can use
the ComputerBrowseDialog object.

0
B Yy a o L OImp = E

Select machine where the OPC Server is locaked,

& my Nebwork Places
= “ Entire Metwark
f} Microsoft Terminal Services
= ?ﬂ Microsoft Windows Metwork,
= 11'1 Code-test
'Y Spsl-server
'Y Spskworkstatio
'Y Testlab-server
jfj Code-weh
% web Client Metwerk

(12

(51

3

|

Falder: Testlab-server |

Call the ShowDialog method, and if the result is equal to DialogResult.OK, the user
has selected the computer, and its name can be retrieved from the SelectedName
property.

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 49 of 91

e-mail: sales09@opclabs.com, Web: www.opclabs.com 02U MND AT | 0N Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

CODE Consulting and Development, s.r.o. ® /7 OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic XN n

OPC Server Dialog

If you do not know upfront which OPC server to connect to, and do not have this
information from any other source, your application will need to allow the user select
the OPC server(s) to work with. The OPC Server Dialog allows the user to select the
OPC server interactively from the list of OPC Data Access servers installed on a
particular machine.

Browse for OPC Server

i achine name:

Arailable servers:

Description

Genizps OPC-DA Server
0OPC Labs Eit Server
OPC Labz Time Monitar 2.5
Software Toolbox OPC Power Server

OPC Labs Jahhzon Cantralz M2 OPC Server
OPC Test Lab Data Access Analyzer

Elzter QPC-Di& Server

|nformation about the server

CLSID: | cBal 201 7-1203-401 e-b53d-6cER4dd57Eda |

Wendar: |EIF'E Labs |

Implements: |[I:I|:u:D atatcoess20, OpoDatadcoess30) |

Yerzion-independent PraglD:
| OPCLabs KitServer |

ProglD: | OPCLabs KitServer.2 |

[Ok H Cancel]

Set the MachineName property to the name of the computer that is to be browsed,
and call the ShowDialog method. If the result is equal to DialogResult.OK, the user
has selected the OPC Data Access server, and information about it can be retrieved
from the SelectedServer property.

OPC-DA Item Dialog

The OPC-DA Item Dialog allows the user to interactively select the OPC item residing
in a specific OPC server.

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 50 of 91

CODE Consulting and Development, s.r.o. L a » ® o OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic m— Ve &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N n Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

Browse for, OPC-DA ltem

4 aching name:

Server class: OPCLabs KitServer.2

Branches [folderz): Leaves [items]:
= [Root) PR R amp
Greerhouse ~ || Single
Demao
Trends

$5erverContral

[=)- Simulation
FegisterSet_2
RegisterSet_3
Registerset_4
RegizterSet_ 5
FegisterSet_10
RegisterSet_B
RegisterSet_7
FegisterSet_g
FegisterSet_9

|- BB E-B-E-B-E- BB

[IE2

Iltem 1D: | Demo.Ramp |

I ar][Cancel]

Use the Server property to specify the OPC Data Access server whose items are to be
browsed, and call the ShowDialog method. If the result is equal to DialogResult.OK,
the user has selected the OPC item, and information about it can be retrieved from
the SelectedNode property.

OPC-DA Property Dialog

The OPC-DA Property Dialog allows the user to interactively select the OPC property
on a specific OPC item.

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 51 of 91

CODE Consulting and Development, s.r.o. L a » ® o OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N n Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

A

COoOM

Browse for OPC-DA Property

M achine name:
Server classs OPCLabz KitServer.2
Item ID: Demo.Ramp

Available properties:

Property ID Mame Data type Item |D Description
DataType 12 Itern Canonical Data Type

1
[=

A Rightz 14 Itern A ghts
ScanRate R4 Server Scan Rate

g

2 Walue Empty Item Y alue

3 Guality 12 Itemn Quality

4 Timestamp Date Itern Timestarmp
15000 BStr Item 10

15007 BStr Itern Marne
15009 Bool Addable

15008 Boal Yizible

103 LeawELl R L ELI

102 HighELl R& High EU

I Ok l[Cancel]

Use the Server property to specify the OPC Data Access server whose items are to be
browsed, set the Itemld property to the OPC Item Id needed, and then call the
ShowDialog method. If the result is equal to DialogResult.OK, the user has selected
the OPC property, and information about it can be retrieved from the
SelectedProperty property.

OPC User Objects
QuickOPC-COM contains a set of Windows dialog boxes for performing common OPC-

related tasks such as selecting an OPC server or OPC item.

The programming interfaces for the dialog objects are all similar, providing consistent
programming interface to use.
Computer Browser Dialog

OPC servers are usually deployed on the network, and accessed via DCOM. In order
to let the user select the remote computer where the OPC server resides, you can use
the OPCUserBrowseMachine object.

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 52 of 91

CODE Consulting and Development, s.r.o.

Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com

tel. +420 603 214 412, fax +420 378 600 795

®
= RR® 7
T
FOUNDATION

0OPC
Labs

Select the computer you want to connect to.

‘?j Metwork

s Tt Rt R
ER a d

—t— Lo

Lonppaniy e -

BS
ERVER 77
STTHIGERVER

L]

5
5

| TESTLAB-SERVER

COMMON-BUILDER

LR LT TR

_255L@444

(LTS OUNORKSTATIO

Folder: TESTLAB-SERVER

Make Mew Folder

Call the RunMe method, and if the result is equal to 1 (DialogResult.OK), the user has
selected the computer, and its name can be retrieved from the MachineName

property.

OPC Server Browse Dialog

If you do not know upfront which OPC server to connect to, and do not have this

information from any other source, your application will need to allow the user select
the OPC server(s) to work with. The OPC Server Browse Dialog allows the user to
select the OPC server interactively from the list of OPC Data Access servers installed

on a particular machine.

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 53 of 91

CODE Consulting and Development, s.r.o. SN ® (4 OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 4
e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N m Labs
tel. +420 603 214 412, fax +420 378 600 795 | _KEnmIE |

Flirc:rwse for QPC

M achine:
Progll: OPCLabs KitServer2

Available zervers:

Genizys OPC-DA Server
OPC Labz Jahhzon Contralz M2 OPC Server

OPC Lab= Kt Server
Saftware Toaolbox OPC Pover Server 5.1

Information abot the server
Implements; OFC Data Access 2.0, OPC Data Access 3.0

[Ok J [Cancel

Set the MachineName property to the name of the computer that is to be browsed,
and call the RunMe method. If the result is equal to 1 (DialogResult.OK), the user has
selected the OPC Data Access server, and information about it can be retrieved from
the ServerClass property.

OPC-DA Item Browse Dialog

The OPC-DA Item Browse Dialog allows the user to interactively select the OPC item
residing in a specific OPC server.

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 54 of 91

CODE Consulting and Development, s.r.o. L a » ® o OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N n Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

M achine:

ProglD: OPCLabs KitServer 2

ltemlD: Demo.Ramp

Folders: [tema:

= [Roat] Ramp
[+ Greenhouse Single

13

B $ServerControl

= Simulation

il FegisterSet_2
- RegisterSet_3
-RegisterSet_4
ReaqisterSet_b
ReqizterSet_10
ReaqisterSet_B
ReaisterSet_7
ReaqisterSet_8 n
- RegisterSet_9
- BenizterSet 1

m

[ak.] [Cancel

Use the MachineName and ServerClass properties to specify the OPC Data Access
server whose items are to be browsed, and call the RunMe method. If the result is
equal to 1 (DialogResult.OK), the user has selected the OPC item, and information
about it can be retrieved from the Itemld property.

OPC-DA Item Select Dialog

The OPC-DA Item Select Dialog combines together all functionality that allows the
user to completely select the OPC item. The selection starts with machine name, and
continues with server class (ProglID), Item ID and so on.

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 55 of 91

CODE Consulting and Development, s.r.o. L a » ® re OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N a Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

The OFC item reprezents a connection to a data zource within the OPC server.

Y'ou can leave the maching name empty if pou want to connect to the local machine.

M achine name: E]

Server clasz iz tppically a ProglD of the zerver you want to connect o,

Server class: OPCLabs KitServer.2 (]

Enter ar select a fully qualified source item 1D, The syntas depends on the specific OPC server.
Item 10 Demo.Ramp E]

Mozt zervers do not need access path and vou can leave it empty. IF pour zerver works with
acces: paths, vou can enter it here.

Arocess path:

Select the data tppe that you want to obtain fram the zerver for thiz item. Selecting Y T_EMPTY
alloves the zerver to provide the tem value in itz native [canonical] data bppe.

Fiequested data type; O-byte real [VT_RAE) -

[OF.] [Cancel

After the user is finished with the selection, your code can retrieve the information

from properties of the object.

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 56 of 91

CODE Consulting and Development, s.r.o. e ' - (OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N ﬁ Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

OPC Alarms and Events Tasks

This chapter gives you guidance in how to implement the common tasks that are
needed when dealing with OPC Alarms and Events server from the client side. You
achieve these tasks by calling methods on the EasyAEClient object.

Obtaining Information

Methods described in this chapter allow your application to obtain information from
the underlying data source that the OPC Alarms and Events server connects to, or
from the OPC server itself (getting condition state). It is assumed that your
application already somehow knows how to identify the data it is interested in. If the
location of the data is not known upfront, use methods described in Browsing for
Information chapter first.

Getting Condition State

In OPC Alarms and Events, information is usually provided in form of event
notifications, especially for transient (simple and tracking) events. For condition-
related events, however, it is also possible to get (upon request) information about
the current state of a specified condition.

If you want to obtain the current state information for the condition instance in an
OPC Alarms and Events sever, call the GetConditionState method. You pass in
individual arguments for machine name, server class, fully qualified source name,
condition name, and optionally an array of event attributes to be returned. You will
receive back an AEConditionState object holding the current state information about
an OPC condition instance.

Microsoft

Net

In QuickOPC.NET, you can alternatively pass in a ServerDescriptor in place of machine
name and server class arguments.

Modifying Information

Methods described in this chapter allow your application to modify information in the
underlying data source that the OPC server connects to or in the OPC server itself
(acknowledging conditions). It is assumed that your application already somehow
knows how to identify the data it is interested in. If the location of the data is not
known upfront, use methods described Browsing for Information chapter first.

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 57 of 91

Microsoft

Net

Microsoft)

Net

CODE Consulting and Development, s.r.o. e ' - (OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N ﬁ Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

A

COoOM

Acknowledging a Condition

If you want to acknowledge a condition in OPC Alarms and Events server, call the
AcknowledgeCondition method. You pass in individual arguments for machine name,
server class, fully qualified source name, condition name, and an active time and
cookie corresponding to the transition of the condition you are acknowledging.
Optionally, you can pass in acknowledger ID (who is acknowledging the condition),
and a comment string.

In QuickOPC.NET, you can alternatively pass in a ServerDescriptor in place of machine
name and server class arguments.

Browsing for Information

QuickOPC-COM contains methods that allow your application to retrieve and
enumerate information about OPC Alarms and Events servers that exist on the
network, and data available within these servers. Your code can then make use of the
information obtained, e.g. to accommodate to configuration changes dynamically.

The methods we are describing here are for programmatic browsing, with no user
interface (or when the user interface is provided by our own code).

Browsing for OPC Servers

If you want to retrieve a list of OPC Alarms and Events servers registered on a local or
remote computer, call the BrowseServers method, passing it the name or address of
the remote machine (use empty string for local computer).

In QuickOPC.NET, you will receive back a ServerElementCollection object. If you want
to connect to this OPC server later in your code by calling other methods, use the
built-in conversion of ServerElement to String, and pass the resulting string as a
serverClass argument either directly to the method call, or to a constructor of
ServerDescriptor object.

In QuickOPC-COM, you will receive back a Dictionary of ServerElement objects. If you
want to connect to this OPC server later in your code by calling other methods, obtain
the value of ServerElement.ServerClass property, and pass the resulting string as a
serverClass argument to the method call that accepts it.

Each ServerElement contains information gathered about one OPC server found on
the specified machine, including things like the server’s CLSID, ProgID, vendor name,
and readable description.

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 58 of 91

CODE Consulting and Development, s.r.o. e ' - , OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N ﬁ Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

Browsing for OPC Nodes (Areas and Sources)

Information in an OPC Alarms and Events server is organized in a tree hierarchy
(process space), where the branch nodes (event areas) serve organizational purposes
(similar to folders in a file system), while the leaf nodes actually generate events
(similar to files in a file system) — they are called event sources. Each node has a
“short” name that is unique among other branches or leaves under the same parent
branch (or a root). Event sources can be fully identified using a “fully qualified” source
name, which determines the OPC event source without a need to further qualify it
with its position in the tree. OPC event source may look a process tag (e.g. “FIC101”,
or “Devicel.Block101”), or possibly a device or subsystem identification; their syntax
and meaning is fully determined by the particular OPC server they are coming from.

QuickOPC gives you methods to traverse through the address space information and
obtain the information available there. It is also possible to filter the returned nodes
by a server specific filter string.

If you want to retrieve a list of all event areas under a given parent area (or under a
root) of the OPC server, call the BrowseAreas method. In QuickOPC.NET, you will
receive an AENodeElementCollection object. In QuickOPC-COM, you will receive back
a Dictionary of AENodeElement objects. Each AENodeElement contains information
gathered about one sub-area node, such as its name, or an indication whether it has
children.

Similarly, if you want to retrieve a list of event sources under a given parent area (or
under a root) of the OPC server, call the BrowseSources method. You will also receive
back an AENodeElementCollection object (in QuickOPC.NET) or a Dictionary of
AENodeElement objects (in QuickOPC-COM), this time containing the event sources
only. You can find information such as the fully qualified source name from the
AENodeElement of any event source, extract it and pass it further to methods like
GetConditionState or SubscribeEvents.

Querying for OPC Event Categories

Each OPC Alarms and Events server supports a set of specific event categories. The
OPC specifications define a set of recommended categories; however, each OPC
server is free to implement some more, vendor-specific event categories as well.

If you want to retrieve a list of all categories available in a given OPC server, call the
QueryEventCategories method. In QuickOPC.NET, you will receive back an
AECategoryElementCollection object; in QuickOPC-COM, you will receive back a
Dictionary of AECategoryElement objects. Each AECategoryElement contains
information about one OPC event category, such as its (numeric) Categoryld,

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 59 of 91

Microsoft,

Net

CODE Consulting and Development, s.r.o. e ' - (OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N ﬁ Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

readable description, and associated event conditions and attributes. The Categoryld
can be later used when creating an event filter, and is provided to you in event
notifications.

Subscribing for Information

If your application needs to be informed about events occurring in the process and
provided by the OPC Alarms and Events server, it can subscribe to them, and receive
notifications.

QuickOPC contains methods that allow you to subscribe to OPC events, change the
subscription parameters, and unsubscribe.

Subscribing to OPC Events

Subscription is initiated by calling the SubscribeEvents method. The component will
call handlers for Notification event for each event that satisfies the filter criteria of
the created subscription. Obviously, you first need to hook up event handler for that
event, and in order to prevent event loss, you should do it before subscribing.

Events may be generated quite rapidly. Your application needs to specify the
notification rate, which effectively tells the OPC Alarms and Events server that you do
not need to receive event notifications any faster than that.

If you want to subscribe to particular set of OPC Events, call the SubscribeEvents
method. You can pass in individual arguments for machine name, server class, and
notification rate. Optionally, you can specify a subscription filter; it is a separate
object of AESubscriptionFilterType that you create using CreateSubscriptionFilter
method. Other optional parameters are attributes that should be returned in event
notifications (separate set of attributes for each event category is needed), and the
“active” and “refresh when active” flags. You can also pass in a State argument of any
type. When any event notification is generated, the State argument is then passed to
the Notification event handler in the EasyAENotificationEventArgs object.

In QuickOPC.NET, you can alternatively pass in a ServerDescriptor in place of machine
name and server class arguments. You can also replace the individual notification
rate, subscription filter, and returned attributes arguments by passing in an
AESubscriptionParameters object.

The State argument is typically used to provide some sort of correlation between
objects in your application, and the event notifications. For example, if you are
programming an HMI application and you want the event handler to update the
control that displays the event messages, you may want to set the State argument to

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 60 of 91

CODE Consulting and Development, s.r.o. e ' - (OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N ﬁ Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

the control object itself. When the event notification arrives, you simply update the
control indicated by the State property of EasyAENotificationEventArgs, without
having to look it up.

The “refresh when active” flag enables a functionality that is useful if you want to
keep a “copy” of condition states (that primarily exist in the OPC server) in your
application. When this flag is set, the component will automatically perform a
subscription Refresh (see further below) after the connection is first time established,
and also each time it is reestablished (after a connection loss). This way, the
component assures that your code will get notifications that allow you to
“reconstruct” the state of event conditions at any given moment.

Note: It is NOT an error to subscribe to the same set of events twice (or more times),
even with precisely the same parameters. You will receive separate subscription
handles, and with regard to your application, this situation will look no different from
subscribing to different set of events.

Changing Existing Subscription

It is not necessary to unsubscribe and then subscribe again if you want to change
parameters of existing subscription (such as its notification rate). Instead, change the
parameters by calling the ChangeEventSubscription method, passing it the
subscription handle, and the new parameters (notification rate, and optionally a filter
and an “active” flag).

Unsubscribing from OPC Events

If you no longer want to receive event notifications, you need to unsubscribe from
them. To unsubscribe from events that you have previously subscribed to, call the
UnsubscribeEvents method, passing it the subscription handle.

You can also unsubscribe from all events you have previously subscribed to (on the
same instance of EasyAEClient object) by calling the UnsubscribeAllEvents method.

If you are no longer using the parent EasyAEClient object, you should unsubscribe
from the events, or dispose of the EasyAEClient object, which will do the same for
you. Otherwise, the subscriptions will internally be still alive, and may cause problems
related to COM reference counting.

Refreshing Condition States

Your application can obtain the current state of all conditions which are active, or
which are inactive but unacknowledged, by requesting a “refresh” from an event
subscription. The component will respond by sending the appropriate event

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 61 of 91

CODE Consulting and Development, s.r.o. e ' - , OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N ﬁ Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

notifications to the application, via the event handlers, for all conditions selected by
the event subscription filter. When invoking the event handler, the component will
indicate whether the invocation is for a refresh or is an original notification. Refresh
and original event notifications will not be mixed in the same event notifications.

If you want to force a refresh, call the RefreshEventSubscription method, passing it
the subscription handle.

Notification Event

When an OPC Alarms and Events server generates an event, the EasyAEClient object
generates a Notification event. For subscription mechanism to be useful, you should
hook one or more event handlers to this event.

To be more precise, the Notification event is actually generated in other cases, too -
if there is any significant occurrence related to the event subscription. This can be for
three reasons:

1. You receive the Notification when a successful connection (or re-connection)
is made. In this case, the Exception and Event properties of the event
arguments are null references.

2. You receive the Notification when there is a problem with the event
subscription, and it is disconnected. In this case, the Exception property
contains information about the error. The Event property is a null reference.

3. You receive one additional Notification after the component has sent you all
notifications for the forced “refresh”. In this case, the RefreshComplete
property of the event arguments is set to True, and the Exception and Event
properties contain null references.

The notification for the Notification event contains an EasyAENotificationEventArgs
argument. You will find all kind of relevant data in this object. Some properties in this
object contain valid information under all circumstances. These properties are
ServerDescriptor, SubscriptionParameters, Handle, and State. Other properties, such
as Event, contain null references when there is no associated information for them.
When the Event property is not a null reference, it contains an AEEvent object
describing the detail of the actual OPC event received from the OPC Alarms and
Events server.

Before further processing, your code should always inspect the value of Exception
property of the event arguments. If this property is not a null reference, there has
been an error related to the event subscription, the Exception property contains

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 62 of 91

Microsoft

Net

CODE Consulting and Development, s.r.o. e ' - (OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N ﬁ Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

information about the problem, and the Event property does not contain a valid
object.

If the Exception property is a null reference, the notification may be informing you
about the fact that a “forced” refresh is complete (in this case, the RefreshComplete
property is True), or that an event subscription has been successfully connected or re-
connected (in this case, the Event property is a null reference). If none of the
previous applies, the Event property contains a valid AEEvent object with details
about the actual OPC event generated by the OPC server.

Pseudo-code for the full Notification event handler may look similar to this:

if notificationEventArgs.Exception is not null then

An error occurred and the subscription is disconnected, handle it (or
ignore)
else if notificationEventArgs.RefreshComplete then

A “refresh” is complete; handle it (only needed if you are invoking a
refresh explicitly)
else if notificationEventArgs.Event is null then

Subscription has been successfully connected or re-connected, handle
it (or ignore)
else

Handle the OPC event, details are in notificationEventArgs.Event. You
may use notificationEventArgs.Refresh flag for distinguishing refreshes from
original notifications.

The Notification event handler is called on a thread determined by the EasyAEClient
component. For details, please refer to “Multithreading and Synchronization” chapter
under “Advanced Topics”.

There is also an event called MultipleNotifications that can deliver multiple
notifications in one call to the event handler. See Multiple Notifications in One Call in
Advanced Topics for more.

Using Callback Methods Instead of Event Handlers

The subscription methods also allow you to directly specify the callback method
(delegate) to be invoked for each event notification you are subscribing to.

For detailed discussion on this subject, please refer to “Using Callback Methods
Instead of Event Handlers” under the “OPC Data Access Tasks” chapter. All
information presented there applies to OPC Alarms and Events as well.

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 63 of 91

Microsoft

Net

CODE Consulting and Development, s.r.o. ool ' - (OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N ﬁ Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

R

COM

Setting Parameters

While the most information needed to perform OPC tasks is contained in arguments
to method calls, there are some component-wide parameters that are not worth
repeating in every method call, and also some that have wider effect that influences
more than just a single method call. You can obtain and modify these parameters
through properties on the EasyAEClient object, and (in QuickOPC-COM) by EasyOPC
Options Utility.

Following are instance properties, i.e. if you have created multiple EasyAEClient
object, each will have its own copy of them:

e (ClientMode: Allows you to influence how EasyOPC performs various
operations on OPC Alarms and Events servers.

e HoldPeriods: Specifies optimization parameters that reduce the load on the
OPC server.

Instance properties can be modified from your code.

In QuickOPC.NET, if you have placed the EasyAEClient object on the designer surface,
the instance properties can also be directly edited in the Properties window in Visual
Studio.

In QuickOPC-COM, the default values of instance properties can be set using the
EasyOPC Options utility. Your code can still override the defaults if needed.

Following properties are static, i.e. shared among all instances of EasyAEClient
object:

e EngineParameters: Contains global parameters such as frequencies of
internal tasks performed by the component.

e MachineParameters: Contains parameters related to operations that target a
specific computer but not a specific OPC server, such as browsing for OPC
servers using various methods.

e ClientParameters: Contains parameters that influence operations that target
a specific OPC server a whole.

e LinkParameters: Contains parameters that influence how EasyOPC works
with live OPC event subscriptions.

Static properties can only be modified from your code (in QuickOPC.NET) or using the
EasyOPC Options utility (in QuickOPC-COM).

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 64 of 91

CODE Consulting and Development, s.r.o. Y ot ' - , OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

Please use the Reference documentation (and, in QuickOPC-COM, the EasyOPC
Options Help) for details on meaning of various properties and their use.

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 65 of 91

Microsoft)

Net

CODE Consulting and Development, s.r.o. e ' - (OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N ﬁ Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

EasyOPC.NET Extensions

EasyOPC.NET Extensions is a pack of .NET classes that adds more functionality to the
EasyOPC.NET component. It is built upon and relies on EasyOPC.NET, so in fact you
could build all these extensions yourself, but it is meant to provide a ready-made,
verified code for useful “shortcut” methods to achieve common tasks.

Usage

In order to use the EasyOPC.NET Extensions, you need to reference the
Opclabs.EasyOpcClassicExtensions assembly in your project.

A significant part of the EasyOPC.NET Extensions functionality is provided in form of
so-called Extension Methods. In languages that support them (including C#, VB.NET),
extension methods will appear as additional methods on the classes that are being
extended. For example, if you reference OpcLabs.EasyOpcClassicExtensions assembly
in your project, the EasyDAClient class will appear as having many more new
methods that you can choose from. This way, you can write a code that call e.g.
GetDataTypePropertyValue (extension) method on the EasyDAClient object,
although the method is actually located in the EasyDAClientExtension class which
you do not even have to be aware of.

In languages that do not support extension method syntax, it is still possible to use
them, but they need to be called as static method on the extension class, and you
provide the object reference as an additional argument. In the above example, you
would call EasyDAClientExtension.GetDataTypePropertyValue instead, and pass it
the EasyDAClient object as the first argument.

Data Access Extensions
OPC Properties

Type-safe Access

With EasyOPC.NET Extensions, you can use type-safe methods that allow obtaining a
value of an OPC property value already converted to the specified type, with methods
such as EasyDAClient.GetPropertyValuelnt32. There is such a method for each
primitive type, named GetPropertyValueXXXX, where XXXX is the name of the type.
Using these methods allows your code be free of unnecessary conversions.

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 66 of 91

CODE Consulting and Development, s.r.o. e ' - , OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N ﬁ Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

A corresponding set of methods also exists for one-dimensional arrays of primitive
types. Such methods are named GetPropertyValueArrayOfXXXX, where XXXX is the
name of the element type. For example,
EasyDAClient.GetPropertyValueArrayOfString will obtain a value of a property as an
array of strings.

Well-known Properties

A common scenario is to work with well-known OPC properties. With EasyOPC.Net
Extensions, you can quickly obtain a value of any well-known OPC property of a given
OPC item, with methods such as EasyDAClient.GetDataTypePropertyValue. All these
methods are named GetXXXXPropertyValue, where XXXX is the name of the
property. The methods also check the value type and convert it to the type that
corresponds to the property. For example, GetDataTypePropertyValue method
returns a VarType, GetScanRatePropertyValue method returns a float, and
GetDescriptionPropertyValue method returns a string.

Alternate Access Methods

The GetPropertyValueDictionary method allows you to obtain a dictionary of
property values for a given OPC item, where a key to the dictionary is the property Id.
You can pass in a set of property Ids that you are interested in, or have the method
obtain all well-known OPC properties. You can then easily extract the value of any
property by looking it up in a dictionary (as opposed to having to numerically index
into an array, as with the base GetMultiplePropertyValues method).

The GetltemPropertyRecord method allows you to obtain a structure filled in with
property values for a given OPC item. It can retrieve all well-known properties at
once, or you can pass in a set of property Ids that you are interested in. You can then
simply use the properties in the resulting DAltemPropertyRecord structure, without
further looking up the values in any way.

The static DAPropertylDSet class gives you an easy way to provide pre-defined sets of
properties to the above methods. There are well-known sets such as the Basic
property set, Extension set, or Alarms and Events property set. It also allows you to
combine the property sets together (a union operation), with the Add method or the
‘+’ operator.

OPC Items

Type-safe Access

With EasyOPC.NET Extensions, you can use type-safe methods that allow reading an
item value already converted to the specified type, with methods such as

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 67 of 91

CODE Consulting and Development, s.r.o. ool ' - (OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N ﬁ Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

EasyDAClient.ReadltemValuelnt32. There is such a method for each primitive type,
named ReadltemValueXXXX, where XXXX is the name of the type. Using these
methods allows your code be free of unnecessary conversions. The methods also take
care of passing a proper requested data type to the OPC server.

A corresponding set of methods also exists for one-dimensional arrays of primitive
types. Such methods are named ReadltemValueArrayOfXXXX, where XXXX is the
name of the element type. For example, EasyDAClient.ReadltemValueArrayOfint32
will read from an item as an array of 32-bit signed integers.

You can also use type-safe methods that allow writing an item value of a specified
type, with methods such as EasyDAClient.WriteltemValuelnt32. There is such a
method for each primitive type, named WriteltemValueXXXX, where XXXX is the
name of the type. Using these methods allows your code be free of unnecessary
conversions. The methods also take care of passing a proper requested data type to
the OPC server.

A corresponding set of methods also exists for one-dimensional arrays of primitive
types. Such methods are named WriteltemValueArrayOfXXXX, where XXXX is the
name of the element type. For example, EasyDAClient.WritetemValueArrayOfint32
will write into an item as an array of 32-bit signed integers.

Software Toolbox Extender Replacement

QuickOPC.NET can serve as a replacement for Software Toolbox Extender
(www.opcextender.net) component. For further details, please refer to a separate

document installed with the product.

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 68 of 91

http://www.opcextender.net/

CODE Consulting and Development, s.r.o. e ' - (OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N a Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

Application Deployment

This chapter describes how to deploy applications developed with use of QuickOPC.

For some uses, it is acceptable to perform the deployment manually. In other cases,
you will find yourself writing an installer for your application, and you will probably
want to include the installation of QuickOPC components in it as well.

Deployment Elements

Microsoft)

A bli
.n_e't ssemblies

Depending on which assemblies you have referenced in your application, you may
need one or more of the following files be installed with your application:

e Opclabs.BaselLib.dll

e Opclabs.EasyOpcClassic.dll

e Opclabs.EasyOpcClassicExtensions.dll
e Opclabs.EasyOpcClassicForms.dll

e Opclabs.EasyOpcClassicinternal.dll

Please refer to “Product Parts” chapter for description of purpose of individual
assemblies. You will find them under the Assemblies subdirectory in the installation
directory of the product.

The assemblies need to be placed so that the referencing software (your application)
can find them, according to standard Microsoft .NET loader (Fusion) rules. The easiest
is to simply place the assembly files alongside (in the same directory as) your
application file.

@ Development Libraries and COM Components
coM

PP

Depending on which components you have referenced in your application, you may

need one or more of the following files be installed with your application:

easyopcl.exe EasyOPC Local Server/Service | Register by running with
/RegServer or /Service
switch (depending on your

needs)
easyopci.dll EasyOPC In-process Server Register using RegSvr32
easyopcm.dll EasyOPC Messages Register using RegSvr32

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 69 of 91

CODE Consulting and Development, s.r.o. ool ' - , OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N ﬁ Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

easyopct.dil EasyOPC Type Library Register using RegSvr32
OPCUserObjects.exe OPC User Objects Register by running with
Component and Type Library | /Register or /RegServer
Service switch (these
switches are equivalent)

Please refer to “Product Parts” chapter for description of purpose of individual
libraries and components. You will find them under the Bin subdirectory in the
installation directory of the product.

The EasyOPC Type Library is needed with either EasyOPC Local Server/Service or
EasyOPC In-process Server. The EasyOPC Messages file is needed if you want to view
the descriptive texts of categories and events generated by the EasyOPC Local
Server/Service in the event viewer.

You can choose the placement of the files freely. The registration stores the path
information into the registry, and that’s how the system finds them consequently.
Usually, you may have a folder calling something like ‘Bin’ in your application to hold
these files, but that is just a recommendation.

@ Management Tools
COM

R

Depending on which tools the users of your application will use, you may need one or

more of the following files be installed with your application:

EasyOpcOptions.chm EasyOPC Options Utility (none)
EasyOpcOptions.exe
EventLogOptions.chm, | Event Log Options Utility (none)

EventLogOptions.exe

You can choose the placement of the files freely. The only condition is that the CHM
file has to be in the same folder as the corresponding EXE file. Usually, you may have
a folder calling something like ‘Bin’ in your application to hold these files, but that is
just a recommendation.

Prerequisites

Mﬁ"s_éﬂ_t When using QuickOPC.NET: Besides the actual library assemblies, QuickOPC.NET
® requires that following software is present on the target system:

1. Microsoft .NET Framework 3.5 with Service Pack 1 (Full or Client Profile), or
Microsoft .NET Framework 4 (Full or Client Profile).

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 70 of 91

CODE Consulting and Development, s.r.o. ool ' - , OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N ﬁ Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

Needed when: Always (the choice depends on the framework that you
target).

2. Microsoft Visual C++ 2008 Service Pack 1 Redistributable Package ATL
Security Update. It is located in the “Redist” folder under the QuickOPC
installation. You need to select the package appropriate for the targeted
platform (x86 or x64), or both. If you are going to redistribute it within your
own installer, you can call it with “/g” on the command line, for silent
installation.

Needed when: Always.
IMPORTANT: Only use the package from the “Redist” folder in

1Y QuickOPC installation. Do not use the package from Visual Studio
installation or other sources on the Web, as there are several

versions of it, and only one is guaranteed to work.

3. OPC Core Components 3.00 Redistributable (x86 or x64), version 3.00.105.0
or later. It is located in the “Redist” folder under the QuickOPC installation.
You need to select the package appropriate for the targeted platform (x86 or
x64).

: IMPORTANT: On 64-bit system, only install the 64-bit package, even
& if you intent to use some 32-bit OPC components. The 64-bit
package includes everything that is needed for 32-bit OPC as well.
If you are going to redistribute it within your own installer, you can call it via
MSIEXEC.EXE with “/q REBOOT=Suppress” on the command line, for silent
installation.

Needed when: Always.

Note that due to a bug in the OPC Core Components installation, it

may silently skip installation of certain critical components (such as
OPC COM proxy/stub) if .NET Framework 2.0 or later isn’t present on
the system at the time of installation. Always make sure that .NET Framework
is installed, BEFORE installing OPC Core Components.

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 71 of 91

com

P

Microsoft

Net

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic

ey ° o
NS OPC
e-mail: sales09@opclabs.com, Web: www.opclabs.com 02U ND AT | 0N Labs
| M EmMBER |

tel. +420 603 214 412, fax +420 378 600 795

When using QuickOPC-COM: Besides the development libraries and COM
components, QuickOPC-COM requires that following software is present on the

target system:

1.

Microsoft .NET Framework 3.5 with Service Pack 1 (Full or Client Profile), or
Microsoft .NET Framework 4 (Full or Client Profile).

QuickOPC-COM does not directly require the Microsoft .NET Framework 3.5,
but OPC Core Components setup may fail without it.

Microsoft Visual C++ 2010 Redistributable Package. It is located in the
“Redist” folder under the QuickOPC installation. You need to select the
package appropriate for the targeted platform (x86 or x64). If you are going
to redistribute it within your own installer, you can call it with “/q” on the
command line, for silent installation.

OPC Core Components 3.00 Redistributable (x86). It is located in the “Redist”
folder under the QuickOPC installation. If you are going to redistribute it
within your own installer, you can call it via MSIEXEC.EXE with “/q
REBOOT=Suppress” on the command line, for silent installation.

Licensing

Proper license (for runtime usage) must be installed on the target computer (the

computer where the product will be running). The License Manager utility is needed

for this. It is contained in LicenseManager.exe file, located under the Bin subdirectory
in the installation directory of the product.

Deployment Methods

Manual Deployment

In order to deploy your application with QuickOPC.NET manually, follow the steps

below:

Check that proper version of Microsoft .NET Framework is installed, and if it is
not, install it. Note that QuickOPC-COM also needs the Microsoft .NET
Framework 3.5, for OPC Core Components.

Run the QuickOPC installation program, selecting “Production installation”

type.
Perform any steps needed to install your own application.

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 72 of 91

Com

PP

Microsoft,

Net

CODE Consulting and Development, s.r.o. e ' - (OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N ﬁ Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

43) Copy the QuickOPC.NET assemblies to their target locations for your
application.

4b) Copy QuickOPC-COM development libraries, COM components and
management tools to their target locations for your application, and perform
additional actions (such as their registration) as described with the respective files.

5. Run the License Manager from the Start menu, and install the runtime
license.

Automated Deployment

The installer for your application should contain following steps:

1. Check that proper version of Microsoft .NET Framework is installed, and if it is
not, instruct the user to install it. Note that QuickOPC-COM also needs the
Microsoft .NET Framework, for OPC Core Components.

2. Only with QuickOPC.NET: Install Microsoft Visual C++ 2008 SP1
Redistributable Package for the appropriate platform, if needed.

3. Install Microsoft Visual C++ 2010 Redistributable Package for the appropriate
platform.

4. Install OPC Core Components 3.00 Redistributable for the appropriate

platform.

Perform any steps needed to install your own application.

Install QuickOPC.NET assemblies to their target locations for your application.

Install LicenseManager.exe (from Bin or Bin\x64)

No wun

Offer the user an option to run the License Manager.
The user who deploys the application will then:

1. Runyour installer and follow the steps.
2. Use the License Manager and install the runtime license.

If the above described procedure for installing the license (presenting the user with
the License Manager utility user interface) does not fit the needs of your application,
please contact your vendor, describe the situation, and ask for alternative license
installation options.

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 73 of 91

CODE Consulting and Development, s.r.o. e ' - (OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N ﬁ Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

Advanced Topics

OPC Specifications

QuickOPC.NET components directly support following OPC specifications:

all OPC DA (Data Access) 1.0x Specifications (Released)

e all OPC DA (Data Access) 2.0x Specifications (Released)

e all OPC DA (Data Access) 3.0x Specifications (Released)

e OPC Alarms and Events Custom Interface Standard 1.00, 1.01 and 1.10
(Released)

e all OPC Common 1.0x Specifications (Released)

e OPC Common 1.10 Specification (Draft)

QuickOPC.NET components support following OPC specifications indirectly:

e OPC UA (Universal Architecture) 1.00 Specifications for Data Access
e OPC UA (Universal Architecture) 1.01 Specifications for Data Access

OPC-UA (Universal Architecture)

The Unified Architecture (UA) is the next generation OPC standard that provides a
cohesive, secure and reliable cross platform framework for access to real time and
historical data and events.

A separate product, QuickOPC-UA, allows native connections to OPC Unified
Architecture servers.

QuickOPC-Classic is not a native OPC UA client, but you can still use it to connect to
OPC UA servers, using so-called UA COM Proxy that is shipped with the product as
part of OPC UA COM Interop Components.

The OPC UA COM Interop Components from OPC Foundation make it possible for
existing COM-based applications to communicate with UA applications. OPC Labs is
using them to add UA support to existing products. Support for OPC UA COM Interop
Components is not currently provided.

The components that allows COM clients (such as QuickOPC-COM and QuickOPC.NET)
to talk to UA server is called the UA Proxy (or UA COM Proxy). It is a DCOM server
that implements the different OPC COM specifications. A COM client (QuickOPC) uses
DCOM to talk to this proxy, usually on the local machine (i.e. the same machine

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 74 of 91

CODE Consulting and Development, s.r.o. ® /7 OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic ma Ve 4

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N Labs
tel. +420 603 214 412, fax +420 378 600 795 | _KEnmIE |

where the client is), and the proxy translates OPC COM calls into UA calls, and fetches
the information as required from the UA server. It is a dynamic operation — all the
information about address space and data values is retrieved dynamically from the
UA server.

i N UA TCP
for or

OPC COM Clients HTTP/SOAP

OPC COM

Client
OPC COM UA
Server Client

The UA COM Proxy is a DCOM server, meaning that it has its own ProgID and CLSID
(class ID). However, there needs to be some mapping between the particular ProgID
and a particular UA endpoint. The UA COM proxy relies on a concept of a Pseudo-
server, which maps a ProglID to a specific UA endpoint, which is stored in the
configuration file. The configuration tool that is made available as part of OPC UA
COM Interop Components has the ability to select a UA endpoint and create one of
these pseudo-servers that a COM client can then connect to. This endpoint
configuration file is stored on disk in XML format.

This file also stores state information, which is necessary for replicating COM client
configuration across multiple machines. If you set up a client on a particular machine,
talking to a particular UA server, and do all the necessary configuration, and you then
want to take the configuration and install it on multiple other machines, you can
simply copy that endpoint configuration file along. The file contains the ProgID and
CLSID of the pseudo-server, and the endpoint information.

Endpoint
Configuration

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 75 of 91

CODE Consulting and Development, s.r.o. e ' - , OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N ﬁ Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

The configuration tool for OPC UA COM Proxy can be found in your Start menu, under
OPC Foundation - UA SDK 1.01 - UA Configuration Tool. In order to make a UA
server visible to COM clients through the UA COM Proxy, select the “Manage COM
Interop” tab, press the “Wrap UA Server” button, and fill in the information required
by the program. You need to specify the endpoint information for a UA server
(possibly using a UA discovery mechanism), the UA connection parameters, and
finally the COM pseudo-server CLSID and ProglID (the tool offers reasonable defaults).
After you have finished this step, the pseudo-server appears in the list, and OPC COM
clients (QuickOPC-COM, QuickOPC.NET) can connect to it.

Note: The QuickOPC setup program has the “OPC UA COM Interop Components”
option turned off by default, because it has other dependencies and effects on the
system that can complicate the typical setup. If you want to connect to OPC-UA
servers, make sure that you enable “OPC UA COM Interop Components” in the
installation first.

OPC Interoperability

The QuickOPC.NET and QuickOPC-COM components have been extensively tested for
OPC interoperability, with various OPC servers from many vendors, and on different
computing environments. The tests also include regular participation in OPC
Foundation’s Interoperability Workshops, where OPC software is intensively “grilled”
for interoperability.

Having tried so many different OPC servers to connect to, we have encountered
different (though still correct) interpretations of the same OPC specifications, and
also certain common (and less common) divergences from the specifications.
QuickOPC.NET components do not try to “turn down” any OPC server for compliance
problems. Just the opposite: Wherever possible, we have taken a “relaxed” approach
to how the OPC servers are written, and allow and accept the above mentioned
variations. This gives QuickOPC.NET even wider interoperability scope.

Based on the interoperability results (which can be viewed on OPC Foundation’s web
site), QuickOPC.NET and QuickOPC-COM have also been granted the OPC
Foundations’ “Self-tested for Compliance” logo. Note that in contrast with the logo
title, the conditions of this logo program actually require the OPC client software be
tested in presence and with cooperation of OPC Foundation’s Test Lab delegate.

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 76 of 91

CODE Consulting and Development, s.r.o. e ' - (OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N a Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

P

CoMm

P

com

P

CoM

Event Logging

QuickOPC-COM is capable of logging various errors and events, using the standard
Windows mechanisms, or other means. By default, only the most important events
are logged.

You can use the Event Log Options utility (available from Start menu) to influence

which events get logged, and also to select logging into a plain text file instead of

Windows Even Log. The Event Log Options utility has separate documentation and
help file; please refer to it for details on setting the options.

Event logging is only performed by the EasyOPC Local Server/Service component. The
EasyOPC In-process Server component and OPC User Objects do not log any events.

EasyOPC Options Utility

EasyOPC component in QuickOPC-COM comes with predefined settings that are
suitable for most applications. For large-volume operations, or specialized needs, it
may be necessary to fine-tune the settings, using the EasyOPC Options utility. You can
invoke the utility from the Start menu, under the application's program group. The
EasyOPC Options utility has separate documentation and help file; please refer to it
for details on setting the options.

Be aware that the component only "picks up" the EasyOPC options at the startup
time. You should therefore set the proper options in advance, and start the
application afterwards.

EasyOPC Options utility can also be invoked from command line with a /ResetOptions
switch. Doing so acts like pressing the “Factory Defaults” button, but the application
will not display any user interface, and will quickly return the control back. You can
use this feature e.g. in automated installations.

COM Registration and Server Types

The EasyOPC component of QuickOPC-COM can be deployed as following COM server
types:

e In-process Server, or
e |local Server, or
e Service.

There are various advantages and disadvantages of the above options, which are
discussed in details in Microsoft COM materials. In brief, the In-process Server loads

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 77 of 91

Microsoft

Net

CODE Consulting and Development, s.r.o. e ' - (OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N ﬁ Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

the component’s code into the client process, which isolates it from other uses on the
same computer, and provides fastest data exchange between the component and
your code, but there are also security concerns that have to do with the fact the
component has access to your application’s memory. The Local Server and Service
options run in a process that is separate from your application. The Service can be
better controlled while running (started, stopped, etc., using the Service Manager).

The EasyOPC component can be registered as multiple server types at the same time,
e.g. Local Server and In-process Server. The client can then choose which server type
it connects to, or let the COM infrastructure select the server type automatically.
Note that, however, registration as Local Server is mutually exclusive with registration
as Service.

You can use the EasyOPC Options utility to register and unregister the available server
types, except for making a choice between Local Server or Service.

To register EasyOPC component to run as Local Server (and not as Service):

e Open the Command Prompt window.
e Navigate to the “bin” subdirectory of the QuickOPC-COM installation folder.
e Type the following command:

easyopcl /RegServer
To register EasyOPC component to run as Service (and not as Local Server):

e Open the Command Prompt window.
e Navigate to the “bin” subdirectory of the QuickOPC-COM installation folder.
e Type the following command:

easyopcl /Service

Object Serialization

QuickOPC.NET allows you to easily store objects (and object graphs, i.e.
interconnected objects) into files and streams, and also to load them back.

Two types of serialization are supported:

= Basic serialization using Serializable attribute and/or ISerializable interface.
This serialization type is typically used with BinaryFormatter for storing
objects in a binary format.

= XML serialization using XmlSerializer and IXmlSerializable. This serialization
provides objects storage in XML format.

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 78 of 91

CODE Consulting and Development, s.r.o. e ' - , OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &
e-mail: sales09@opclabs.com, Web: www.opclabs.com W Labs

tel. +420 603 214 412, fax +420 378 600 795

A

CcoM

Practically all QuickOPC objects (and their collections and dictionaries) can be
serialized and deserialized. For example:

®= You can load and store EasyDAClient and EasyAEClient objects (their instance
properties, i.e. various parameters, are serialized).

= You can load and store parameter objects, such as DAGroupParameters.

®" You can load and store arguments (and arrays of arguments) passed to
functions, such as lists of items to be subscribed to
(DAltemGroupArguments). This functionality can be used e.g. with storing
lists of subscribed items in file, outside your application code.

= You can load and store results of browsing and querying (e.g.
DANodeElementCollection, AECategoryElementCollection).

®= You can load and store results of reading (e.g. DAVtq).

= You can load and store condition states (AEConditionState) and event data
(AEEvent).

®= You can load and store all notification data contained in event arguments, for
OPC Data Access item changes (EasyDAltemChangedEventArgs) or OPC
Alarms and Events notifications (EasyAENotificationEventArgs). This
functionality can be used e.g. for logging significant changes and events in the
underlying system.

Asynchronous Operations

All “normal” method calls on EasyOPC object in QuickOPC-COM are performed
synchronously with respect to the caller, i.e. the methods perform their work and the
caller is blocked until the operation is either complete, or times out. Internally the
actual work is performed on a different thread, but this is more or less an
implementation details that does not you much as a developer.

For advanced scenarios, EasyOPC component supports a concept of asynchronous
operations, too. The methods that perform asynchronously are prefixed with the
word Invoke, and they are:

¢ InvokeReadltem,
¢ |nvokeReadltemValue,
e |InvokeWriteltem,
¢ InvokeWriteltemValue.

It should be made clear that the “asynchronicity” discussed here refers only to the

interaction between your application and the EasyOPC Component. It does NOT refer
to the nature of the calls made by the EasyOPC Components to the target OPC Server.
The usage of various OPC methods such as synchronous and asynchronous operations

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 79 of 91

CODE Consulting and Development, s.r.o. ool ' - , OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N ﬁ Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

is controlled separately (see ClientMode in Setting Parameters), and by default,
EasyOPC always prefers the recommended method, i.e. asynchronous read/write
methods, internally. With proper settings, it is perfectly possible to make
synchronous call to EasyOPC that would internally trigger an asynchronous OPC
method, and also vice versa.

All InvokeXXXX methods accept a State among their input arguments, and they all
return an AsyncActivity object. The call to InvokeXXXX returns very quickly, just
initiating the requested operation inside the component. There are two ways how
you can monitor the progress and obtain the actual result of the operation:

e By polling the Completed property of the returned AsyncActivity, you can
determine whether the operation has completed. When completed, the
outcome is available through OperationResult property of the AsyncActivity
object.

e By hooking up an event handler for the OperationCompleted event on the
EasyDAClient object, your code will be notified when the asynchronous
operation completes. The event notification carries an
OperationCompletedEventArgs object that, among other things, contains
OperationResult object which has the actual outcome of the operation.

The type of OperationResult object contained in AsyncActivity or
OperationCompletedEventArgs depends on the actual asynchronous method that
had been invoked. For example, when you call InvokeReadltem, the operation
outcome is of DAVtqResult type.

Note that timeouts apply to asynchronous operations in the same way as to
synchronous operation, and therefore at some moment, every asynchronous
operation always completes, though it may be with timeout (or some other) error.

There is also an event called MultipleOperationsComplete that can deliver multiple
results in one call to the event handler. See Multiple Notifications in One Call for
more.

Multiple Notifications in One Call

QuickOPC offers the possibility to process multiple event notifications in one call to
an event handler. For applications that involve working with events generated with
high frequency, this approach may improve the efficiency and therefore throughput,
however the precise performance needs to be measured for each application, and is
highly influenced by other factors (such as the code in the event handler, and the way
it accessed the event arguments).

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 80 of 91

CODE Consulting and Development, s.r.o. e ' - , OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N ﬁ Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

A

COM

QuickOPC processes events in “chunks”, and this gives it the opportunity to merge
multiple event notifications into a single call. For each event that has a handler for
individual calls, QuickOPC also provides a complementary event handler that delivers
multiple notifications in a single call. The complementary event also has a different
type for its arguments. The correspondence is described in a table below.

EasyDAClient | Operation- OperationCompleted- | MultipleOperations | MultipleOperationsCompleted-
Completed (*) | EventArgs -Completed EventArgs
ItemChanged EasyDAltemChanged- | Multipleltems- EasyDAMultipleltemsChanged-
EventArgs Changed EventArgs
EasyAEClient Notification EasyAENotification- Multiple- EasyAEMultipleNotifications-
EventArgs Notifications EventArgs

(*) OperationCompleted event is available in QuickOPC-COM only.

The event arguments types for events bearing multiple notifications are all
constructed the same: They have only one member, a property called ArgsArray. This
property contains an array of what would be the event arguments of individual
notifications. The event handler is supposed to loop through this array sequentially
and process its elements as they would be event arguments of separate calls. The
elements of the array should be processed from beginning to the end, as this order
corresponds to the time order in which the individual calls would be made.

Internally, the component “chops” the event stream by event type, so that only
events of the same type are delivered together. The component always repeatedly
calls the handler for individual notifications first (if such handler exists), and then
proceeds to call the handler for multiple notifications (if it exists). Although it is
possibly to hook to both handlers on the same object, such practice would rarely if
ever make any sense. Always hook to either the handler for individual notifications,
or the handler for multiple notifications, but not both.

Internal Optimizations

OPC is quite “sensitive” to proper usage, with regard to efficiency. QuickOPC
performs many internal optimizations, and uses the knowledge of proper approaches
and procedures to effectively handle the communication with OPC servers.

Here are some of the optimizations implemented in QuickOPC:

e Wherever possible, OPC operations are performed on multiple elements at
once.

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 81 of 91

CODE Consulting and Development, s.r.o. e ' - , OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N ﬁ Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

e OPCitems with similar update rates are put into a common OPC group.

e OPCitems with similar percentage deadbands are put into a common OPC
group.

e OPCitems are not removed from OPC groups immediately, but only if not
used for certain amount of time.

e OPCitem datais held in memory, and if fresh enough, the value from
memory is taken, and no OPC call is made to satisfy the Read request.

e OPC asynchronous calls are preferred over synchronous calls.

e Minimum update rates are enforced, so that the system cannot be easily
overloaded.

e Multiple uses of the same OPC server or same OPC item in the user
application are merged into a single request to the OPC.

e Internal queues are used to make sure that OPC callbacks cannot be blocked
by user code.

Failure Recovery

The OPC communication may fail in various ways, or the OPC client may get
disconnected from the OPC server. Here are some examples of such situations:

e The OPC server may not be registered on the target machine — permanently,
or even temporarily, when a new version is being installed.

e The DCOM communication to the remote computer breaks due to unplugged
network cable.

e The remote computer running the OPC server is shut down, or restarted, e.g.
for security update.

e The configuration of the OPC server is changed, and the OPC item referred to
by the OPC clients no longer exists. Later, the configuration could be changed
again and the OPC item may reappear.

e The OPC server indicates a serious failure to the OPC client.

e The OPC server asks its clients to disconnect, e.g. for internal reconfiguration.

QuickOPC handles all these situations, and many others, gracefully. Your application
receives an error indication, and the component internally enters a “wait” period,
which may be different for different types of problems. The same operation is not
reattempted during the wait period; this approach is necessary to prevent system
overload under error conditions. After the wait period elapses, QuickOPC will retry
the operation, if still needed at that time.

All this logic happens completely behind the scenes, without need to write a single
line of code in your application. QuickOPC maintains information about the state it

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 82 of 91

CODE Consulting and Development, s.r.o. e ' - , OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N ﬁ Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

has created inside the OPC server, and re-creates this state when the OPC server is
disconnected and then reconnected. Objects like OPC groups and OPC items are
restored to their original state after a failure.

Even if you are using the subscriptions to OPC items or events, QuickOPC creates
illusion of their perseverance. The subscriptions outlive any failures; you do not have
to (and indeed, you should not) unsubscribe and then subscribe again in case of error.
After you receive event notification which indicates a problem, simply stay
subscribed, and the values will start coming in again at some future point.

Timeout Handling

The core QuickOPC methods (Readltem, ReadltemValue, WriteltemValue, and their
counterparts that work with multiple items at once) are all implemented as
synchronous function calls with respect to the caller, i.e. they perform some
operation and then return, passing the output to the caller at the moment of return.
However, this does not mean that the component makes only synchronous calls to
OPC servers while you are calling its methods. Instead, QuickOPC works in
background (in separate threads of execution) and only uses the method calls you
make as "hints" to perform proper data collection and modifications.

Internally, QuickOPC maintains connections to requested OPC servers and items, and
it establishes the connections when you ask for reading or writing of certain OPC
item. QuickOPC eventually disconnects from these servers and items if they are no
longer in use or if their count goes beyond certain limits, using its own LRU-based
algorithm (Least Recently Used).

When you call any of the core QuickOPC methods, the component first checks
whether the requested item is already connected and available inside the
component. If so, it uses it immediately (for reading, it may provide a cached value of
it). At the same time, the request that you just made by calling the method is used for
dynamic decisions on how often the item should be updated by the server etc.

If the item is not available, QuickOPC starts a process to obtain it. This process has
many steps, as dictated by the OPC specifications, and it may take some significant
time. The method call you just made does not wait indefinitely until the item
becomes available. Instead, it uses certain timeout values, and if the item does not
become available within these timeouts, the method call returns. The connection
process is totally independent of the method that was called, meaning that no
problem in the connection process (even an ill-behaved server, or a broken DCOM
connection) can cause the calling method to wait longer than the timeouts dictate.

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 83 of 91

CODE Consulting and Development, s.r.o. e ' - , OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N ﬁ Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

The timeout values are accessible via Timeouts property on the EasyDAClient object.
The explanation of the individual timeout values is provided in the Reference
documentation.

Note that if the nature of the situation allows the component to determine that the
item will NOT be available, the method will return earlier (before the timeouts
elapse) with the proper error indication. This means that not every connection
problem causes the method to actually use the full value of the timeouts. For
example, when the server refuses the item because the item has an incorrect name,
this error is passed immediately to the caller.

It is important to understand that even if the method call times out because the
connection process was not finished in time, the connection process itself is not
cancelled and may continue internally. This means that next time the same item is
requested, it may be instantly available if the connection process has finished. In
other words, the timeouts described above affect the way the method call is
executed with respect to the caller, but do not necessarily affect at all the way the
connection is performed.

When you create an EasyDAClient object, the timeout values are set to reasonable
defaults that work well with reporting or computation type of OPC applications. In
these applications, you know that you MUST obtain certain value within a timeout,
otherwise the application will not be doing what is intended to do: e.g. the report will
not contain valid data, or the computations will not be performed. When the
requested item is not instantly available (for example, the server is not started yet),
the application can afford delays in processing (method calls made to EasyDAClient
object may block the execution for certain time). For this kind of applications, you
may leave the default timeout values, or you may adjust them based on the actual
configuration and performance of your system.

There is also a different kind of applications, typically an HMI screen, which wants to
periodically update the values of controls displayed to the user. The screen usually
contains larger number of these controls that are refreshed in a cyclic way by the
application. If possible, you should use subscription-based updated for these
applications, and in such case the timeouts are of much lesser importance. But, in
some application the subscriptions are not practical, and you resort to periodic
reading (polling). The fact that SOME data is not instantly available should not be
holding the update of others. It is perfectly OK to display an indication that the data is
not available momentarily, and possibly display them in some future refresh cycle
when they become available. For this kind of application, you may prefer to set all the
above mentioned timeout properties to lower values. This assures that the refresh

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 84 of 91

mk:@MSITStore:C:/DevRoot/OPCLabs/EasyAccess/3.03/EasyOPCDA/Doc/EasyOPCDAHM/EasyOPCDA.chm::/easyda3object.htm
mk:@MSITStore:C:/DevRoot/OPCLabs/EasyAccess/3.03/EasyOPCDA/Doc/EasyOPCDAHM/EasyOPCDA.chm::/easyda3object.htm
mk:@MSITStore:C:/DevRoot/OPCLabs/EasyAccess/3.03/EasyOPCDA/Doc/EasyOPCDAHM/EasyOPCDA.chm::/easyda3object.htm

CODE Consulting and Development, s.r.o. e ' - , OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N ﬁ Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

loop always goes quickly over all the controls on the screen, no matter whether the
data is available for them immediately, or only in a postponed fashion.

To simplify this explanation, you can also say that if you need the OPC values for
further *sequential* processing, reasonably long timeouts are needed (and the
defaults should serve well in most situations). If you are refreshing the data on a
cyclic basis by polling, you will probably need to set the timeouts to lower values.

Data Types

OPC Data Access specification is based on COM, and uses Windows VARIANT type
(from COM Automation) for representing data values.

Note: Some OPC servers even use certain VARIANT types that are not officially
supported by Microsoft.

Microsoft

n_e-t Microsoft .NET Framework has a different concept, and all data is represented using
® an Object type. Conversions between the two are available, but not always fully
possible.

In addition, not everything that can be stored in an Object can later be processed by
all .NET tools and languages. Microsoft has created so-called Common Language
Specification (CLS), which has certain rules and restrictions that, if followed,
guarantee cross-language compatibility. Public QuickOPC.NET components
(assemblies) are fully CLS compliant, and that includes the way the data types are
converted to and from OPC types.

QuickOPC.NET converts data from COM to .NET according to following table:

COM type (VARIANT) .NET type (Object)

VT_EMPTY System.Object (null reference)
VT_NULL System.DBNull (singleton class)
VT_I12 System.Int16

VT_ 14 System.Int32

VT _R4 System.Single

VT_R8 System.Double

VT_CY System.Decimal

VT_DATE System.DateTime

VT_BSTR System.String

VT_DISPATCH System.Object (not tested)
VT_ERROR System.Int32

VT_BOOL System.Boolean

VT_VARIANT converted type of the target VARIANT

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 85 of 91

CODE Consulting and Development, s.r.o. e ' - , OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N ﬁ Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

A

COoOM

VT_DECIMAL System.Decimal

VT 11 System.Int16

VT_UIl System.Byte

VT_UI2 System.Int32

VT _Ul4 System.Int64

VT_I8 System.Int64

VT_UI8 System.Decimal

VT_INT System.Int32

VT_UINT System.Int64

VT_ARRAY | vtElement | System.Array of the converted vtElement type

Types that are highlighted do not convert from COM to their “natural” .NET
counterparts, because the corresponding .NET type is not CLS compliant. Instead, a
“wider” type that is CLS compliant is chosen.

Types not listed in the above table at all are not supported.

Strings are internally represented in Unicode wherever possible.

QuickOPC-COM is meant to be used from applications based on COM Automation,
and in general, any valid VARIANT can be processed by such application. Some
automation tools and programming languages, however, have restrictions on types of
data they can process. If your tool does not support the data type that the OPC server
is using, without QuickOPC, you would be out of luck.

In order to provide the ability to work with widest range of OPC servers and the data
types they use, QuickOPC-COM converts some data types available in OPC. We have
made a research into the data types supported by various tools, and QuickOPC-COM
uses a subset of VARIANT types that is guaranteed to work in most tools that are in
use today (one of the most restrictive languages appears to be VBScript).

Note that the QuickOPC-COM only converts the data that it passes to your application
— either in output arguments of property accessors or methods, or input arguments in
event notifications. In the opposite direction, i.e. for data that your application passes
to QuickOPC-COM, we use very “relaxed” approach, and accept the widest range of
possible data types.

QuickOPC-COM converts data from OPC Data Access according to following table:

VARTYPE VARTYPE

in OPC Data Access In QuickOPC-COM
VT_EMPTY VT_EMPTY
VT_NULL VT_NULL

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 86 of 91

Microsoft

Net

CODE Consulting and Development, s.r.o.
Bolevecka naves 27, 323 00 Plzen, Czech Republic
e-mail: sales09@opclabs.com, Web: www.opclabs.com

° (g

tel. +420 603 214 412, fax +420 378 600 795

'17"*3.
FOUNDATION

0OPC
Labs

VT 12 VT 12
VT 14 VT 14

VT R4 VT R4

VT_R8 VT_R8

VT_CY VT_CY

VT_DATE VT_DATE

VT _BSTR VT _BSTR

VT_DISPATCH VT_DISPATCH

VT_ERROR VT_R8

VT_BOOL VT_BOOL

VT_VARIANT VT_VARIANT

VT_DECIMAL VT_DECIMAL

VT 11 VT I2

VT _UI1 VT _UI1

VT _UI2 VT 14

VT _Ul4 VT_R8

VT_I8 VT_R8 (may lose precision)
VT_UI8 VT_R8 (may lose precision)
VT_INT VT_I4

VT_UINT VT_R8

VT_ARRAY | vtElement VT_ARRAY | vtElement

Types that are highlighted are converted to a different data type. If a precise match

does not exist, a “wider” type is chosen.

Types not listed in the above table at all are not supported.

Strings are internally represented in Unicode wherever possible.

Multithreading and Synchronization

The EasyDAClient and EasyAEClient objects and all their related helper objects are

thread-safe.

In QuickOPC.NET, objects in the OpcLabs.EasyOpc.DataAccess.Forms namespace
follow the general Windows Forms rules and conventions, meaning that any public

static (Shared in Visual Basic) type members are thread-safe. Any instance members

are not guaranteed to be thread safe.

In QuickOPC.NET, if you are hooking to the event notifications provided by the

EasyDAClient or EasyAEClient component, or processing these notifications in your

callback methods, make sure that you understand how the component generates

these events and what threading issues it may involve. This is how it works:

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 87 of 91

CODE Consulting and Development, s.r.o. e ' - , OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N ﬁ Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

PP

com

The EasyDAClient or EasyAEClient object has a SynchronizationContext property.
This property can either be set to a null reference, or to an instance of
SystemThreading.SynchronizationContext class. When the SynchronizationContext
is set to a null reference, EasyDAClient or EasyAEClient calls any event handlers or
callback methods on its own internal thread, which is different from any threads that
you have in your application. When the SynchronizationContext is set to a concrete
instance, the synchronization model implemented by this object is used. The
EasyDAClient or EasyAEClient then typically uses the Post method of this
synchronization context to invoke event handlers in your application.

When the EasyDAClient or EasyAEClient object is created, it attempts to obtain the
synchronization context from the current thread (the thread that is executing the
constructor). As a result, if the thread constructing the EasyDAClient or EasyAEClient
object has a synchronization context associated with it, it will become the value of
the SynchronizationContext property. Otherwise, the SynchronizationContext
property will be set to a null reference. This way, the synchronization context
propagates from the calling thread.

Access to Windows Forms controls is not inherently thread safe. If you have two or
more threads manipulating the state of a control, it is possible to force the control
into an inconsistent state. Other thread-related bugs are also possible, such as race
conditions and deadlocks. It is important to make sure that access to your controls is
performed in a thread-safe way. Thanks to the mechanism described above, this is
done automatically for you, provided that the constructor EasyDAClient or
EasyAEClient object is called on the form’s main thread, as is the case if you place the
EasyDAClient or EasyAEClient component on the form’s design surface in Visual
Studio. This works because by default, Windows Forms sets the synchronization
context of the form’s main thread to a properly initialized instance of
System.Windows.Forms.WindowsFormsSynchronizationContext object.

Similarly, Windows Presentation Foundation (WPF) applications use
System.Windows.Threading.DispatcherSynchronizationContext to achieve the same
thing.

If your application is not based on the above frameworks, or is using them in an
unusual way, you may have to take care of the synchronization issues related to
event notification yourself, either by directly coding the synchronization mechanism,
or by implementing and using a class derived from
SystemThreading.SynchronizationContext.

In QuickOPC-COM, if you are hooking to the event notifications provided by the
EasyDAClient or EasyAEClient component, make sure that you understand how the

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 88 of 91

Microsoft

Net

CODE Consulting and Development, s.r.o. ool ' - (OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N ﬁ Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

component generates these events and what threading issues it may involve. The
event notifications generated by EasyDACIlient or EasyAEClient object originate from
a thread that may be (and generally is) different from the thread that you used to
create an instance of the object or call its methods. The code in your event handler
must be prepared to deal with it.

A typical issue that arises is that access to Windows controls is not inherently thread-
safe, and should be done from a dedicated thread only. It is important to make sure
that access to your controls is performed in a thread-safe way. This typically involves
setting up some communication mechanism between the event handler code, and a
thread dedicated to handling the user interface of your application.

64-bit Platforms

You can create 32-bit or 64-bit, or platform-independent applications with
QuickOPC.NET. 32-bit applications can also run on 64-bit systems. 64-bit applications
can only run on 64-bit systems. Normally, you will target your application to “Any
CPU”, and the same code will then run on both x86 and x64 platforms.

Supported platforms are x86 (i.e. 32-bit), and x64 (i.e. 64-bit). The product has not
been tested and is not supported on Itanium platform (1A-64).

32-bit and 64-bit Code

QuickOPC.NET assemblies contain certain parts in native 32-bit code (for x86
platform) and in native 64-bit code (for x64 platform). QuickOPC.NET uses a special
technique to merge the so-called mixed mode assemblies (assemblies that contain
both managed and native code) for multiple platforms into a single set of assemblies.

Any application built with QuickOPC.NET assemblies can also be run on 32-bit
Windows, or on 64-bit Windows for x64 processors. By default, such applications run
as 32-bit processes or 32-bit machines and as 64-bit processes on 64-bit machines.
You can also build your code specifically for x86 or x64 platform, if you have such
need.

OPC on 64-bit Systems

Classic OPC is based on Microsoft COM/DCOM, which has originally been designed for
32-bit world, and later ported to and enhanced for 64-bit systems. There are several
issues with COM/DCOM on 64-bit systems and some additional issues specific to OPC.

The most notable issue is the fact that browsing for OPC servers does not always fully
work between 32-bit and 64-bit worlds. This is because the OPCEnum component
(provided by OPC Foundation) runs in 32-bit process and only enumerates 32-bit OPC

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 89 of 91

CODE Consulting and Development, s.r.o. e ' - (OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N ﬁ Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

servers. Consequently, native 64-bit OPC servers may be “invisible” for browsing from
32-bit OPC clients, although it is possible to connect to them, provided that the OPC
client has OPC server’s ProgID or CLSID.

Version Isolation

Product versions that differ in major version number or the first digit after decimal
point can be installed on the same computer in parallel. For example, version 5.12
can be installed together with version 5.02 or even version 3.03. Product versions
that differ only in second digit after decimal point are designed to be replaceable, i.e.
cannot be installed on the same computer simultaneously. For example, version 5.02
replaces version 5.01 or version 5.00, and version 5.12 replaces versions 5.10 and
5.11.

The simulation OPC server is not subject to the versioning rules described above for
the QuickOPC product. Just one instance of simulation OPC server can exist on a
computer. Features are being added to the simulation OPC server with newer
versions of QuickOPC. Always install the simulation OPC server from the latest
QuickOPC version in order to guarantee that all examples are functional.

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 90 of 91

CODE Consulting and Development, s.r.o. e ' - (OPC
Bolevecka naves 27, 323 00 Plzen, Czech Republic i V2 &

e-mail: sales09@opclabs.com, Web: www.opclabs.com £FOUND AT | 0N ﬁ Labs
tel. +420 603 214 412, fax +420 378 600 795 | _mEMDER |

Additional Resources

If you are migrating from earlier version, please read the “What’s New” document
(available from Start menu).

Study the Reference documentation (also available from Start menu).
Explore the examples and bonus tools and materials installed with the product.

You may have a look at “OPC Foundation Whitepapers” folder under the
documentation group in Start menu. We have included a selection of OPC Foundation
White Papers that you may find useful while getting accustomed with OPC in general,
or dealing with its specific aspects. Please pay particular attention to document titled
“Using OPC via DCOM with Windows XP Service Pack 2”, as it contains useful hints
that apply not only to Windows XP SP2 users.

Check the vendor’s Web page for updates, news, related products and other
information.

Concepts-QuickOPC-Classic 5.12.docx; 1/11/2012 Page 91 of 91

